

AngularJS by Example

Learn AngularJS by creating your own apps,
using practical examples which you can use
and adapt

Chandermani

BIRMINGHAM - MUMBAI

AngularJS by Example

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2015

Production reference: 2030315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-381-5

www.packtpub.com

www.packtpub.com

Credits

Author
Chandermani

Reviewers
Idan Cohen

Ashutosh Das

Prasanna Gautam

Ruoyu Sun

Jurgen Van de Moere

Commissioning Editor
Ed Gordon

Acquisition Editor
Rebecca Youé

Content Development Editor
Sriram Neelakantan

Technical Editors
Edwin Moses

Shruti Rawool

Copy Editors
Roshni Banerjee

Neha Karnani

Merilyn Pereira

Project Coordinator
Aboli Ambardekar

Proofreaders
Ting Baker

Simran Bhogal

Stephen Copestake

Indexer
Priya Sane

Graphics
Disha Haria

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Author

Chandermani is a software craftsman with a passion for technology and is an
expert on the web stack. With more than a decade of experience under his belt, he
has architected, designed, and developed solutions of all shapes and sizes on the
Microsoft platform.

He never believed JavaScript could be a great platform for app development until he
saw Angular. Such is his love for this framework that every engagement he is part of
has an Angular footprint.

Being an early adopter of the Angular framework, he tries to support the platform
in every possible way, whether by writing blog posts on various Angular topics or
helping his fellow developers on Stack Overflow, where he is often seen answering
questions on AngularJS channels.

A former MSFT employee, he now works for Technovert, where he leads a bunch of
awesome developers who build cloud-scale web applications using AngularJS and
other new-age frameworks.

Writing this book has just been a surreal experience and I would like
to thank my Technovert family who supported me in all possible
ways, be it helping me with sample apps, reviewing the content, or
offloading some of my professional commitments to make sure I get
enough time to write the book.

I especially want to thank Vijay Yalamanchili, who inspired me to
take up this endeavor and also made sure there are no impediments
while I juggle my professional and book writing commitments.

And finally, I want to express my gratitude toward my family. I
know your blessings are always with me.

About the Reviewers

Idan Cohen is a full-stack web developer at HP Software. He has over a decade of
experience in large-scale projects on an enterprise level.

He has an unquenchable thirst for cutting-edge technologies and an insatiable
hunger for seamless user experience.

Since his military service in an elite technological unit (8200), he has worked with a
variety of companies and organizations in the fields of media, telecommunication,
and business services.

Ashutosh Das is mainly a backend developer from Bangladesh with experiences
of working with Django, Node.js, Laravel, and so on, as well as works with Angular.
js. He spends his spare time in GitHub. He works as a freelancer and has a part-time
job. He is also a reviewer of the book Angularjs UI development, Packt Publishing.

Prasanna Gautam is an engineer who wears many different hats depending on
the occasion. He's worked with various web frameworks over the years for both
personal and professional projects and finally settled on AngularJS. When this
book came up, he wanted to contribute to it from his experience working on
AngularJS projects.

Ruoyu Sun is a designer and developer living in Hong Kong. He is passionate
about programming and has been contributing to several open source projects. He
founded several tech start-ups using a variety of technologies before going into the
industry. He is the author of the book Designing for XOOPS, O'Reilly Media.

I would like to thank all my friends and family who have always
supported me.

Jurgen Van de Moere, born in 1978, grew up in Evergem, Belgium with his
parents, sister, and pets. At the age of 6, he started helping his dad, who owned a
computer shop, with assembling computers for clients.

While his friends were playing computer games, Jurgen was rather fascinated by
writing custom scripts and programs to solve problems that his dad's clients were
dealing with. After graduating in latin-mathematics from Sint-Lievenscollege in
Ghent, Jurgen continued his education at Ghent University, where he studied
computer science.

His Unix username at university was "jvandemo", the nickname he still goes by on
the Internet today. In 1999, Jurgen started his professional career at Infoworld. After
years of hard work and dedication as a developer and network engineer, he was
awarded various management positions in 2005 and 2006.

Being a true developer at heart, he missed writing code, and in 2007, he decided to
end his management career to pursue his true passion again: development. Since
then, he has been studying and working from his home office in Belgium, where he
currently lives with his girlfriend, son, and dogs.

In a rapidly evolving world of data, intensive real-time applications, he now focuses
on JavaScript-related technologies with a heavy emphasis on AngularJS and Node.js.

His many private and public contributions have helped form the foundation of
numerous successful projects and companies around the world.

If you need help with your project, Jurgen can be reached at hire@jvandemo.com,
on his blog at http://www.jvandemo.com, or on Twitter at https://twitter.com/
jvandemo.

http://www.jvandemo.com
https://twitter.com/jvandemo
https://twitter.com/jvandemo

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Getting Started 7

The basics of Model View Controller 8
The customary Hello Angular app (Guess the Number!) 8
Setting up a development server 9
Building Guess the Number! 10
The app model 10
The controller 12
The app view 13

Interpolation 15
Directives 16
Expressions 18
AngularJS bindings 20

Revisiting the controller 23
Scope 24
App bootstrapping 27
Tools 29
Resources 30
Summary 30

Chapter 2: Building Our First App – 7 Minute Workout 33
What is 7 Minute Workout? 34

Downloading the codebase 35
Code organization 36

Organizing the JavaScript code 36
The 7 Minute Workout model 39
Adding app modules 42

Table of Contents

[ii]

The app controller 42
Dependency injection 43

Dependency Injection 101 44
Dependency injection in Angular 45

Controller implementations 47
Tracking the duration of an exercise using the $interval service 50

Verifying the implementation 51
Implementing exercise transitions 54
Using $watch to watch the model's changes 54

Exploring $watch 55
Implementing transitions using $watch 57

Using the AngularJS Promise API for exercise transitions 58
The basics of promises 58

The 7 Minute Workout view 61
Image path binding with ng-src 62
Using ng-style with the Bootstrap progress bar 63

Adding start and finish pages 64
Understanding SPAs 64

View layouts for SPAs using ng-view 64
Defining 7 Minute Workout routes 65
The config/run phase and module initialization 66
View navigation in the controller using $location 69
Working with the $location service 70

Learning more about an exercise 71
Adding descriptions and video panels 72

Working with ng-include 75
Working with ng-repeat 77

Displaying the remaining workout time using filters 79
Creating a seconds-to-time filter 79

Understanding AngularJS filters 80
Implementing the secondsToTime filter 81

Adding the next exercise indicator using ng-if 84
Summary 86

Chapter 3: More AngularJS Goodness for 7 Minute Workout 89
Formatting the exercise steps 91

Understanding ng-bind-html 92
Using ng-bind-html with data of the exercise steps 93

Tracking exercise progress with audio clips 95
Implementing audio support 96

Implementing WorkoutAudioController 98
Exploring the audio synchronization issue 102
AngularJS dirty checking and digest cycles 103
Fixing the next-up exercise's audio synchronization issue 106

Table of Contents

[iii]

Pausing exercises 107
Implementing pause/resume in WorkoutController 108
Adding the view fragment for pausing/resuming 110

Pausing/resuming overlays using mouse events 110
Pausing/resuming overlays with plain CSS 112
CSS class manipulation using ng-class 112

Stopping audio on pause 113
Using the keyboard to pause/resume exercises 114

Enhancing the workout video panel 116
Refactoring the video panel and controller 116
Video playback in the pop-up dialog 118

Integrating the ui.bootstrap modal dialog 118
Animations with AngularJS 124

AngularJS CSS animation 124
AngularJS JavaScript animation 127
Adding animation to 7 Minute Workout 129

Workout history tracking using Angular services 131
AngularJS services primer 132

Creating AngularJS services 132
Implementing workout history tracking 136

The WorkoutHistoryTracker service 136
Integrating the WorkoutHistoryTracker service with a controller 139

Adding the workout history view 140
AngularJS eventing 142
Enriching history tracking with AngularJS eventing 145
Persisting workout history in browser storage 148
Filtering workout history 149
Filtering and ordering using ng-repeat 150

AngularJS filters 150
The AngularJS orderBy filter 151
Special ng-repeat properties 153

Summary 153
Chapter 4: Building Personal Trainer 155

The Personal Trainer app – the problem scope 156
Personal Trainer requirements 157

The Personal Trainer model 158
Sharing the workout model 158
The model as a service 159

The Personal Trainer layout 160
The Personal Trainer navigation with routes 161

Integrating left and top navigation 162

Table of Contents

[iv]

Implementing the workout and exercise list 164
WorkoutService as a workout and exercise repository 165
Exercise and workout list controllers 166
Exercise and workout list views 166

Building a workout 167
Building left nav 168
Adding the WorkoutBuilderService service 169
Adding exercises using exercise nav 171
Implementing WorkoutDetailController 171

Route resolving 173
Resolving routes not found! 174
Implementing WorkoutDetailController continued… 175

Implementing the workout builder view 175
AngularJS forms 176

AngularJS form constructs 177
The ng-model directive 177
Controlling model updates with ng-model-options (Angular 1.3) 181
ng-model – beyond data binding 183
Understanding NgModelController 184
Implementing a decimal-to-integer formatter and parser 186
AngularJS validation 188
The AngularJS model state 189
Workout builder validation 191
Custom validation for an exercise count 198
Saving the workout 200

The AngularJS form directive and form validation 202
The FormController API 203
Fixing the saving of forms and validation messages 205
Fixing unwarranted model updates 208
Resetting the form 209
AngularJS $routeParams 209
Dynamically generated inputs and forms 210

Revisiting Angular scopes 212
Summary 218

Chapter 5: Adding Data Persistence to Personal Trainer 221
AngularJS and server interactions 222

Setting up the persistence store 222
Seeding the database 224

$http service basics 225
Personal Trainer and server integration 227

Loading exercise and workout data 228
Loading exercise and workout lists from a server 229
Mapping server data to application models 233

Table of Contents

[v]

Understanding promise chaining 237
Loading exercise and workout data from the server 239
Fixing workout and exercise detail pages 240
Creating and resolving custom promises 242
Fixing workout and exercise detail pages continued… 244

Performing CRUD on exercises/workouts 245
Fixing and creating a new workout 246
Cross-domain access and AngularJS 249
Using JSONP to make cross-domain requests 250
Cross-origin resource sharing 252

Getting started with $resource 252
RESTful API services 253
$resource basics 254
Understanding $resource actions 255
$resource action invocation 256

Using $resource to access exercise data 258
The hidden cost of hiding asynchronicity 260

Exercising CRUD with $resource 261
The $resource service with non-RESTful endpoints 264

Request/response interceptors 265
Using an interceptor to pass the API key 266

AngularJS request/response transformers 269
Handling routing failure for rejected promises 271

Handling workouts not found 272
Fixing the 7 Minute Workout app 274
Summary 274

Chapter 6: Working with Directives 277
Directives – an introduction 278
Anatomy of a directive 279

Creating a workout-tile directive 279
Exploring the ng-click directive 283

Building a remote validation directive to validate the
workout name 287

The remote-validator directive (for v1.3 or less) 288
The require directive definition 291
The link function 292

The remote-validator directive in Angular 1.3 294
Model update on blur 296

Using priority to affect the order of execution of the compile
and link functions 297
Life cycle of a directive 299
The priority and multiple directives on a single element 302

Table of Contents

[vi]

Implementing a remote validation clues directive 302
Angular $compile service 304
Directive controller function 305
Inter-directive communication – integrating busy-indicator
and remote-validator 305

Fixing remote-validator – pre-Angular 1.3 306
Fixing remote-validator (Angular 1.3) 307

Injecting HTML in the directive compile function 309
Understanding directive templates and transclude 310

Understanding directive-isolated scopes 314
Creating the AJAX button directive 316

AngularJS jQuery integration 322
Integrating the Carousel jQuery plugin in Workout Runner 324
Tunneling jQuery events with directives 329

Summary 332
Chapter 7: Testing the AngularJS App 333

The need for automation 334
Testing in AngularJS 334

Types of testing 334
Testing who and when 335
The AngularJS testing ecosystem 336

Getting started with unit testing 337
Setting up Karma for unit testing 338
Managing script dependencies with Bower 340
Unit testing AngularJS components 341

Unit testing filters 341
Unit testing using the ngMock module 343
Unit testing controllers 344
Unit testing WorkoutController 349
Unit testing services 355
Unit testing directives 360
Unit testing routes and resolve 368

Getting started with E2E testing 370
Introduction to Protractor 371
Setting up Protractor for E2E testing 372
Writing E2E tests for the app 374
Setting up backend data for E2E testing 376

Mocking the server backend in E2E testing 376
More E2E tests 378

Testing Workout Runner 379
Page objects to manage E2E testing 380

Summary 382

Table of Contents

[vii]

Chapter 8: Handling Common Scenarios 383
Building a new app 384

Seed projects 384
Yeoman 385

Building multilingual apps (internationalization) 388
Angular I18n support 389

Locale changes using angular-dynamic-locale 390
Using angular-translate for text translations 390

Handling authentication and authorization 394
Cookie-based authentication 395
Token-based authentication 397
Handling authorization 401

Adding authorization support 402
Communication and data sharing patterns 404

Using a URL to share data across pages 404
Using $scope 405

Using $rootScope 406
Using services 406
Inter-directive communication 407
Using events 407

Performance 408
Performance guidelines 410

Keeping the page/view small 410
Optimizing watches for read-once data 411
Hiding (ng-show) versus conditional rendering (ng-if/ng-switch) content 411
Expressions being watched should not be slow 412
Minimizing the deep model watch 412
Handling large datasets with ng-repeat 413
Avoiding mouse-movement-tracking events 414
Avoiding calling $scope.$apply 415
Lazy-loading, minification, and creating multiple SPAs 415
Caching remote data wherever appropriate 418
Using Batarang to measure performance 420

Useful third-party libraries 421
Summary 422

Index 423

Preface
The first thing I must do is to congratulate you! You have made an excellent decision
in choosing to learn this super awesome JavaScript framework: AngularJS. Rest
assured you won't be disappointed, either by AngularJS, or by this book.

JavaScript has come a long way. I remember when I started using JavaScript (around
10 years ago), it was primarily used for doing some client-side form validation
and some animation, nothing very serious. Developers hacked their solution using
JavaScript without much understanding of the language and its capabilities.

As JavaScript became more mainstream, browsers became more capable, jQuery
hit the scene, and developers started testing the limits of the language and browser
capabilities.

In recent years, a new breed of JavaScript applications has hit the fancy of the
developer community, Single Page Applications (SPAs). These are rich client
applications with no page refresh/redirects, bookmarkable URLs and they imbibe
the UX design / code patterns such as MVC, MVP, MVVM, or MV*.

AngularJS is one such SPA JavaScript framework. Open sourced by Google and
actively developed and supported by a vibrant community around it, this framework
has gained a lot of traction. Due to its modular design, powerful features, and
great performance it has become a great choice for building business apps over the
JavaScript platform.

Through this book, our aim is to teach you how to effectively build apps using the
AngularJS platform. We will be building multiple apps on this platform ranging
from simple ones to more complex ones.

Learning by example has its advantages; you immediately see the concept explained
in action. Also, if you are like me and prefer Do It Yourself (DIY) over too much
theory, then this book is a perfect fit for you.

Preface

[2]

What this book covers
Chapter 1, Getting Started, introduces you to the AngularJS framework. We create a
super simple app in AngularJS that highlights some core features of the framework.

Chapter 2, Building Our First App – 7 Minute Workout, will teach us how to build our
first real AngularJS app. In the process, we learn more about the framework's MVC
constructs and are introduced to scopes and binding capabilities of the framework.
We learn about code organization using modules and dependency injection, look at
view routing in action, and learn how to use filters.

Chapter 3, More AngularJS Goodness for 7 Minute Workout, focuses on adding the bells
and whistles to the 7 Minute Workout app and in the process touches upon into
some new Angular capabilities. This chapter covers Angular services, digest cycles,
animation support, filters and few other concepts.

Chapter 4, Building Personal Trainer, introduces a new exercise where we morph
7 Minute Workout into a generic Personal Trainer app. The new app has the capability to
create new workout plans other than the original 7 Minute Workout app. In this chapter,
we exclusively focus on AngularJS form capabilities.

Chapter 5, Adding Data Persistence to Personal Trainer, covers retrieving and saving
data to the server. We augment our Personal Trainer with data load and data
persistence capabilities. Server interaction and data persistence have been ignored in
all the previous chapters.

Chapter 6, Working with Directives, explains directives by building some of our own
custom directives for the Personal Trainer app. Directives are the most powerful and
most misunderstood feature of AngularJS.

Chapter 7, Testing the AngularJS App, highlights how to use the AngularJS testing
constructs within Personal Trainer as AngularJS was built with testability in mind.

Chapter 8, Handling Common Scenarios, provides some practical tips and guidance
around scenarios that we might encounter while developing apps on this framework.
We will cover scenarios such as structuring the app for complex views, inter
controller/directive communication, common framework pitfalls, authentication and
authorization, code organization for large size apps, and other similar scenarios.

What you need for this book
Since the platform is JavaScript, you need a text editor (preferably an IDE) which you
can use to create and edit HTML, CSS, and JavaScript files.

It will be ideal if you are connected to the Internet while working on the samples as
some samples link to libraries available online. To work in offline mode, you need to
download the libraries and change the reference in the samples.

Preface

[3]

For Chapter 5, Adding Data Persistence to Personal Trainer, which involves client-server
interaction, we will be using MongoLab hosting which requires an account to be
created before it can be used.

The apps build in this book have been developed and tested against Angular
version 1.3.3

Who this book is for
If you've always wanted to get started with AngularJS, this is an essential guide
designed to help you do exactly that. Start building applications immediately
with the featured examples, and uncover a simpler approach to JavaScript web
development. You will need some prior experience with HTML, CSS, and
JavaScript to get started.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The http-server module is just one
of the many options available out there."

A block of code is set as follows:

<div class="container" ng-controller="GuessTheNumberController">
 <!--Truncated Code-->
 <p class="text-info">No of guesses :
 {{noOfTries}}
 <p>
</div>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold as shown:

// outputs the value of property
{{property}}

//outputs the result of boolean comparison. Ternary operator
{{property1 >=0?'positive': 'negative'}}

//call testMethod and outputs the return value
{{testMethod()}}

Preface

[4]

Any command-line input or output is written as follows:

npm install http-server –g

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Once the
collections are added, add yourself as a user to the database from the User tab."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or might have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing,
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started
Developing applications in JavaScript is always a challenge. Due to its malleable nature
and lack of type checking, building a decent size application in JavaScript is difficult.
Moreover, we use JavaScript for all types of processes such as User Interface (UI)
manipulation, client server interaction, and business processing/validations.
As a result, we end up with spaghetti code that is difficult to maintain and test.

Libraries such as jQuery do a great job of taking care of various browser quirks
and providing constructs that can lead to an overall reduction in lines of code.
However, these libraries lack any structural guidance that can help us when
the codebase grows.

This is where architectural patterns such as Model View Controller (MVC) and
frameworks such as AngularJS come into the picture. This chapter is dedicated to
understanding the concept behind MVC architecture and learning how to put these
principles into practice while we build a simple app using AngularJS.

The topics that we will cover in this chapter are as follows:

• MVC basics: We will talk in brief about each of the components of the
Model-View-Controller pattern.

• Building our first AngularJS app: We will build a small game, Guess the
Number! in AngularJS.

• Understanding the Model, View, and Controller components: We will
dissect the game that we built to understand the MVC components of
AngularJS.

• Working with scopes: AngularJS scopes are an important concept to
understand. This chapter will introduce us to scopes and the role they
play in the framework.

Getting Started

[8]

• An introduction to some AngularJS constructs: We will introduce some new
constructs such as expressions, directives, and interpolations that we used to
build the Guess the Number! app.

• App initialization: We will talk about the app initialization process in
AngularJS; this is also known as App bootstrapping.

• Lastly, we will provide some resources and tools that will come in handy
during AngularJS development and debugging.

So let's get started with our first topic: MVC.

The basics of Model View Controller
MVC is a UI architectural pattern that has been around for some time. It is
based on the premise of separation of responsibility. In MVC, we have the
following components:

• Model: This stores business data
• View: This represents the model in UI
• Controller: This is responsible for coordinating between a model and view

Any change in the model is reflected in the view and any change done by the user
while interacting with the view is reflected back on the model. Here, the controller
acts as a coordinator and is responsible for keeping the model and view in sync.

This is an over-simplified definition of the MVC and if we search the Web, we will
find numerous variations of this pattern such as MVP, Front Controller, MVVM,
and maybe some others. The net effect of this separation is that the code becomes
more organized, more understandable, and maintainable.

For us, the best way to understand MVC is to see it in action and hence, we are going
to build our first Hello World app in AngularJS. This app will help us to become
familiar with the AngularJS framework and see the MVC paradigm in action.

The customary Hello Angular app (Guess
the Number!)
As our first exercise, we want to keep things simple but still showcase the framework
capabilities. Therefore, we are going to build a very simple game, Guess the Number!.
The objective of the game is to guess a computer-generated random number in as
few tries as possible.

Chapter 1

[9]

This is how the game looks:

The gameplay is simple.

We enter the guess in the textbox. To verify whether the guess is correct, we click
on Verify. The game gives us a hint to improve our next guess. If we are unable to
guess or have guessed the number correctly, we can restart the game by clicking
on Restart.

Before we start working on the game, it is strongly recommended that we run the
sample code from a development server instead of loading the app directly from
the filesystem. The browser security model has some restrictions on running script
content from the local filesystem. Let's quickly look at some easy-to-install options
for a development server.

Setting up a development server
The development web server that we choose greatly depends on the platform that
we work on and the backend we support. However, for apps in this book that target
purely client-side development, any web server will do.

My recommendation would be to use the http-server module of Node.js. Since
Node.js is available cross-platform, we can install Node.js from http://nodejs.org/.

Once Node.js is installed, installing the http-server module and running the http
server are easy. Open the command line and type the following command:

npm install http-server –g

This installs the HTTP server at the global level.

To run the server, just navigate to the folder where the app code resides, or open the
folder from where we want to serve static files, and type this:

http-server

Getting Started

[10]

And that's it! We have an HTTP server running at http://localhost:8080 that
can serve files from the current directory.

The http-server module does support some startup configurations.
Check the documentation at https://github.com/nodeapps/
http-server.

The http-server module is just one of the many options available out there.
Depending upon the platform we are on, we can also try Python's SimpleHTTPServer
module, Mongoose, or any such web server.

Let's build Guess the Number!.

Building Guess the Number!
The standard practice when building user interfaces is to build them top-down. Start
with designing the UI and then plug in the data and behavior according to the needs.
With such an approach, the UI, data, and the behavioral aspects of the app are all
tightly coupled, which is a less than ideal situation!

With the MVC paradigm, things work a little differently. There is a conscious
effort to design the model beforehand by looking at the UI and expected behavior,
and to encapsulate the behavior aspect into the controller, thus minimizing the
coupling between the controller implementation and the UI (view) that it supports.

Given these facts, we will start by identifying the model data for our app based
on the feature set.

The app model
The model is the data that the view and controller work on. It represents the state of
the system projected on the view. To determine the model for our own app, we need
to detail the features that the app supports. These features include:

• Supporting the generation of random numbers (original)
• Supporting input for a user to guess the value (guess)
• Tracking the number of guesses already made (noOfTries)
• Giving users hints to improve their guess based on their input (deviation)
• Giving a success message if the user guesses the number correctly

(deviation)

Chapter 1

[11]

Once we have the feature list, we can now determine what data needs to be tracked
and that becomes part of our model. For the preceding feature set, the elements in
parentheses denote properties that will support these features and hence represent
the app model.

Designing the model for an app is a very crucial process. If it is done
right, we can minimize the friction between a model and view and
simplify the controller implementation.
While building any app, I urge you to first think about the
functionality you want to offer, then the model that can support the
functionality, and lastly think about how to build a view for it. This
is a good practice irrespective of the library or framework you use to
build your app.

The model properties highlighted earlier need to be hosted in a script and then
referenced by the view. These model properties will be defined inside a controller
and hence it's time to introduce the Angular Controller.

However, before we do that, we first need to create a file for the controller code. Due
to the size of the app, we are going to create a single file that will contain everything,
from the controller script to the view HTML code. To start with, this is the outline of
our app HTML code:

<!DOCTYPE html>
<html>
<head>
 <title>Guess The Number !</title>
 <link href="http://netdna.bootstrapcdn.com/bootstrap/
 3.1.1/css/bootstrap.min.css" rel="stylesheet">
</head>
<body>
 <script src="http://ajax.googleapis.com/
 ajax/libs/angularjs/1.3.3/angular.js"></script>
</body>
</html>

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Getting Started

[12]

Create an HTML file and add the preceding HTML code to it. Henceforth, everything
that we outline should be appended to this file. The app HTML code itself is self-
explanatory. We reference the Twitter Bootstrap CSS in the <head> section and the
Angular framework inside the <body> tag.

Guess the Number! and all the other apps that are part of this book have
been tested against Angular version 1.3.3.

We can now start building the controller.

The controller
The controller manages the model and the view. It is always designed with the
view in mind and it is the view's behavior that drives controller functionality. In
AngularJS, the controller is a JavaScript class (a constructor function) that hosts
the model and exposes some behavior that the view binds to. How it binds to the
view will be clear when we discuss the view implementation.

Let's start working on the controller implementation. While defining our model, we
have already detailed the functional aspect of the application and we do have a fair
idea about how the view should behave. Keeping that in mind, this is how the app
controller looks:

function GuessTheNumberController($scope) {
 $scope.verifyGuess = function () {
 $scope.deviation = $scope.original - $scope.guess;
 $scope.noOfTries = $scope.noOfTries + 1;
 }
 $scope.initializeGame = function () {
 $scope.noOfTries = 0;
 $scope.original = Math.floor((Math.random() * 1000) + 1);
 $scope.guess = null;
 $scope.deviation = null;
 }
 $scope.initializeGame();
}

Add this controller script to the file created earlier after the Angular script
declaration inside its own script block.

The GuessTheNumberController function sets up some model properties that we
described in the The app model section and exposes two methods: verifyGuess and
intializeGame.

Chapter 1

[13]

The verifyGuess function verifies whether the guess matches the original value
and updates model properties deviation and noOfTries accordingly. The
initializeGame function is used to initialize the model properties before the start
of the game, and during the game whenever the user clicks on the Restart button.

The last statement in the preceding controller calls initializeGame to set up the
game for the first time.

The overall controller implementation is self-explanatory but the only oddity seems
to be the $scope object. This $scope object has been passed as a parameter to the
controller function and all functions and properties are attached to $scope. To
understand the role of the $scope object and how things tie together, we need to
start implementing the view.

However, we are still not done with the controller yet. We will revisit the controller
once we get the app running and learn a bit more about them.

The app view
The view is nothing but a UI projection of model data. Looking at the Guess the
Number! UI, we will agree that this UI may not win any User Experience (UX)
award; still, this HTML is what we call the view.

Let's put some focus on the view and start building it. We have already added the
controller to the app file. Add this view code inside the body tag at the top:

<div class="container">
 <h2>Guess the Number !</h2>
 <p class="well lead">Guess the computer generated random number
 between 1 and 1000.</p>
 <label>Your Guess: </label><input type="number"
 ng-model="guess"/>
 <button ng-click="verifyGuess()" class="btn btn-primary
 btn-sm">Verify</button>
 <button ng-click="initializeGame()" class=
 "btn btn-warning btn-sm">Restart</button>
 <p>
 <p ng-show="deviation<0" class="alert alert-warning">Your
 guess is higher.</p>
 <p ng-show="deviation>0" class="alert alert-warning">Your
 guess is lower.</p>
 <p ng-show="deviation===0" class="alert alert-success">Yes!
 That"s it.</p>
 </p>
 <p class="text-info">No of guesses : <span
 class="badge">{{noOfTries}}<p>
</div>

Getting Started

[14]

Lots of interesting stuff here, but before we dissect the view implementation we need
to link the view and the controller; in fact, both the view and the controller need to
be linked to the Angular framework first.

To let Angular know it needs to process the view HTML, update the existing <body>
tag with a custom attribute ng-app:

<body ng-app="app">

The ng-app attribute tells Angular to treat everything defined inside the HTML tag
(with ng-app attribute) as an angular app and process it accordingly. The <body> tag
just mentioned becomes the root of the application.

The "app" value of the ng-app attribute tells Angular to search for a module named
app and load it.

We have a new concept called module. Modules in the Angular framework are
containers that hold various artifacts that we create or are part of the framework.
Any Angular-specific script implementation always goes into one or another module.

Let's define the "app" module that the <body> tag references. Add the highlighted
statement inside the script block containing the controller declaration:

angular.module('app',[])
function GuessTheNumberController($scope) {

We use the global Angular object that is part of the Angular framework to declare
an Angular module. The first parameter is the name of the module and the second
is there to provide module dependencies.

We now have a module named app. This module is linked with the view using
ng-app, hence the Angular framework can now process the view and load the
module. However, the link between the controller and the Angular framework
(as well as between the view and the controller) is still missing.

To make Angular aware of the controller, we need to register the controller with
the module we just created. Update the module declaration now to:

angular.module('app',[])
.controller('GuessTheNumberController', GuessTheNumberController);
function GuessTheNumberController($scope) {

The angular.module function creates a module and returns a module object. This
module object has a function controller that allows us to register a controller.
The first parameter is the name of the controller and the second is the controller
implementation itself. With the first two lines from the preceding code, we have
declared a module app and registered the GuessTheNumberController function
with it.

Chapter 1

[15]

Lastly, we link the controller and the view using another attribute, ng-controller.
Update the div (class=container) parameter to:

<div class="container" ng-controller="GuessTheNumberController">

Well, the app is complete and ready to be tested! Open the file in the browser and
start guessing.

If you are having trouble running the app, a working HTML is available
on my GitHub account http://goo.gl/4j6DG6.

If we glance at the HTML file now, we should be mightily impressed with what we
have achieved with these 40 lines. There is no DOM manipulation or model-view
synchronization code and still everything works perfectly.

To understand how this app functions in the Angular context, we need to delve
deeper into the view HTML as the view acts as an entry point into the app and links
everything together.

Let's go back and check the app HTML. It looks like standard HTML with some
new attributes (ng-app, ng-controller, ng-model, ng-click, and ng-show) and
symbols (,), {, and } ({{ and }}).

In the Angular world, {{ and }} are the interpolation symbols and the ng-* attributes
are what we call directives. The model properties and functions are either assigned
to these directive attributes or referenced inside interpolation symbols. Clearly,
interpolation symbols and directive attributes have some behavior attached to them
and seem to be linking the view HTML and controller code. Let's try to understand
what these directive attributes and interpolation symbols are actually doing.

Interpolation
Look at this HTML fragment from the Guess the Number! code:

<p class="text-info">No of guesses :
{{noOfTries}}<p>

The model properties noOfTries is sandwiched between two interpolation symbols.
Interpolation works by replacing the content of the interpolation markup with the
value of the expression (noOfTries) inside the interpolation symbol.

Getting Started

[16]

Interpolations are declared using the syntax {{expression}}. This expression
looks similar to the JavaScript expression but is always evaluated in the context of
the linked $scope object. Remember we passed a $scope object to the controller
function, as follows:

function GuessTheNumberController($scope) {

And we then attached the properties noOfTries to the $scope object in the
implementation. Clearly, the interpolation expression can reference such properties
and link it to the view. Later in this chapter, we will discuss more about the $scope
object to understand how the underlying infrastructure works and the link between
the controller, $scope, and the view is established.

Another interesting aspect of interpolation is that changes made to model properties
are automatically synchronized with the view. Run the app and make some guesses;
the noOfTries value changes after every guess and so does the view content.

Interpolation is an excellent debugging tool in scenarios where we
need to see the state of the model. With interpolation, we don't have
to put a breakpoint in code just to know the model value. Since
interpolation can take an expression, we can pass a function, an object,
or a primitive type and see its value.

Interpolations are flexible and can be placed almost anywhere in HTML:

• Inside a tag (<div>{{noOfTries}}</div>)
• As an attribute value (<div class='cls-{{noOfTries}}'>)
• As an attribute name (<input {{myAttributeName}}="">)

Learning interpolation was easy; now let's look at the other framework construct,
directives.

Directives
Directives, in AngularJS, are constructs that allow us to extend the standard HTML
vocabulary. They help us augment the behavior of the existing HTML elements.
Also, they allow us to create our own elements as well! This makes directives the
most powerful and the most celebrated feature of the framework. Directives are
the way to create and package reusable components in the Angular framework.

Chapter 1

[17]

For our game, too, we use some Angular directives, including ng-app, ng-
controller, ng-model, ng-click, and ng-show. Each of these directives extends
the behavior of the HTML element on which they are defined. Here is what each
of these directives do:

• ng-model: This sets up a link between the scope property passed in as the
attribute value (guess in our case) and HTML input element. As we change
the input value, the guess variable changes; it works the other way round
too. In this case, we update the guess value in the controller as we do in
intializeGame function ($scope.guess = null;), it clears the input value.
We can use interpolation to verify if guess indeed is changing when input
changes. Append an interpolation next to input, as follows:
<input type="number" ng-model="guess"/> {{guess}}

Save and refresh the page. If we now enter a numeric value in the input field,
the guess interpolation next to it automatically changes.

• ng-click: When attached to an HTML element, this directive evaluates the
expression passed as an attribute value when the element is clicked. So the
Verify button causes the verifyGuess function to execute and the Restart
button causes the initializeGame method to execute.

• ng-show: When attached to an element, this shows or hides the element
based on the expression's return value. If true, the element is shown,
otherwise it gets hidden. In our case, we use ng-show on the three paragraph
elements and show/hide them based on the value of deviation.

• ng-controller: As we have already seen, this directive links the controller
implementation with the view.

We will cover ng-app later in this chapter.

Directives are everywhere! They are the most powerful feature of
Angular. Using them in HTML is intuitive but creating directives
requires a decent understanding of the framework. We have dedicated
a complete chapter to directives where we will learn how to create our
own directives and use them in views.

Similar to the expression usage in interpolation, directives too can take an expression
(although it's not mandatory). All the directives' attributes we have used in the app
have an expression assigned to them and like interpolation these expressions are
also evaluated in the context of the linked scope. Expressions are like input
parameters to a directive.

Getting Started

[18]

In Angular, some directives accept interpolated expressions instead of standard
expressions, for example, the ng-src directive that allows setting the src property
of the image tag dynamically:

ng-src="http://www.google.com/images/{{imageName}}"

But more often than not we need to provide a non-interpolated expression to the
directive. Using an expression with {{}} and without it is not the same and hence
we should be always be careful while assigning an expression to the directive
attribute.

Using interpolation expression for a directive that accepts
standard expressions is a common mistake that AngularJS
newbies make. ng-click='{{verifyGuess()}}' is invalid, ng-
click='verifyGuess()' is correct. When in doubt, always refer
to the documentation for the directive to know what is acceptable.

The usage of expressions in interpolation symbols and directives is an important
concept to understand and this is what we are going to discuss in the next section
on expressions.

Expressions
Expressions in AngularJS are nothing but plain JavaScript code that are evaluated
in the context of the current scope object with few limitations. The excerpt from the
AngularJS documentation (https://docs.angularjs.org/guide/expression)
highlights the following differences and limitations:

• Context: JavaScript expressions are evaluated against the global window.
In Angular, expressions are evaluated against a scope object.

• Forgiving: In JavaScript, trying to evaluate undefined properties generates
ReferenceError or TypeError. In Angular, expression evaluation is
forgiving to undefined and null.

• No Control Flow Statements: You cannot use the following in an Angular
expression: conditionals, loops, or exceptions.

• Filters: You can use filters within expressions to format data before
displaying it.

Chapter 1

[19]

These limitations still do not stop us from doing some nifty stuff with expressions.
As we can see in the following examples, these all are valid expressions:

// outputs the value of property
{{property}}

//outputs the result of boolean comparison. Ternary operator
{{property1 >=0?'positive': 'negative'}}

//call testMethod and outputs the return value
{{testMethod()}}

// assign value returned by testMethod to x. Creates "x" on scope
 if not available. Empty output
{{x=testMethod()}}

// calls testMethod() and testMethod2() and assign return values
 to x and y. Empty output
{{x=testMethod();y=testMethod2()}}

Having looked into expressions, I strongly advise you to keep
your expressions simple, thus keeping the HTML readable. The
ng-show="formHasErrors()" expression is always better
than ng-show="unname==null || email==null ||
emailformatInValid(email) || age < 18".
So, when an expression starts to become complex, move it into a
controller function.

That concludes our discussion on expressions. We now have a working app and
a fair understanding of the model, view, and controller part of the framework.

Let's dig a bit deeper into the framework and understand how some parts of the
app function.

To start with, it is evident now that the ng-controller directive together with
interpolation and other directives such as ng-model, ng-show, and ng-click allow
us to establish a connection between view and model properties/action methods
defined on the controller.

To understand how this connection works, we need to introduce an important new
concept: AngularJS data bindings.

Getting Started

[20]

AngularJS bindings
To keep the view and the model in sync, Angular creates bindings between view
elements and model properties. Bindings are created for the interpolations and
directives that we define on the view.

Interpolation bindings are easy to understand. An expression inside the interpolation
symbol is evaluated and the return value replaces the interpolation. Whenever the
expression value changes, the view is automatically updated.

A directive on the other hand can bind any HTML element attribute with the model
depending upon the directive implementation.

For example, the ng-show directive that we have used is as follows:

<p ng-show="deviation<0" class="alert alert-warning">Your guess is
 higher.</p>

This binds the paragraph's (<p>) class property with the model value deviation.
When the expression deviation<0 is false, a CSS class .ng-hide (with style defined
as display:none) is appended; when true, the class is removed. This addition and
removal of the class results in the previous paragraph element being shown
and hidden.

Similarly, the ng-model directive binds the value attribute of the input with the
model property it references.

Angular supports MathML and SVG markup and can perform
interpolation on them.

Angular binding setup starts once the browser has rendered the raw HTML file or
what we call the view template. The framework then compiles this view template
and in the process sets up the necessary binding. It then does the necessary
synchronization between the model and the view template that produces the final
rendered output. The following screenshot depicts the transformations that happen
to the view template after data binding is done for our app:

Chapter 1

[21]

We can ourselves check the view template of the app by removing the ng-app
attribute from the body tag and refreshing the app in the browser.

Where Angular differs from other template frameworks is that these bindings
between a model and view are live. Angular does not merely merge the model and
view templates to create the final HTML. Changes done to the model update the
view and any update in the view done by the user is reflected back in the model.
AngularJS never regenerates the HTML again; it just works on the relevant part
of HTML and updates it on model changes. This data binding capability of the
framework together with directives and interpolations makes Angular an exceptional
view templating engine too.

An interesting characteristic about these bindings is that they can be one-way or
two-way. Depending upon the directive used, the nature of the binding is decided.

In one-way binding, changes to the model are synchronized with the view.
Following are examples of one-way binding:

<p>
 <p ng-show="deviation<0" class="alert alert-warning">Your
 guess is higher.</p>
 <p ng-show="deviation>0" class="alert alert-warning">Your
 guess is lower.</p>
 <p ng-show="deviation===0" class="alert alert-success">Yes!
 That"s it.</p>
 </p>
 <p class="text-info">No of guesses : <span
 class="badge">{{noOfTries}}<p>

Getting Started

[22]

Any change to the noOfTries and deviation properties affects these bindings and
consequently the user interface content.

In two-way bindings, not only are changes done to a model reflected in the view,
but the reverse also holds true. In our app, the input box defines a two-way binding
between the input value and guess using the ng-model directive:

<label>Your Guess: </label><input type="number" ng-model="guess"/>

Changing the value in the input box updates guess and, if we update the guess
property in the controller, the view automatically gets updated, as happens in
one-way bindings.

The bottom-line is, when adding directives and interpolation to a view, we are
essentially instructing Angular to create data bindings that keep the model and
view in sync.

The overall bindings in our app look like this:

It's time now to revisit the controller implementation and understand the
implementation in the light of our newly acquired understanding of Angular bindings.

Chapter 1

[23]

Revisiting the controller
Now that the app is running, why don't we get a firsthand experience of how
the view and controller interact. Put a breakpoint on the JavaScript code inside
verifyGuess. Enter a guess and click on Verify. The breakpoint will be hit.

We can see that the value that we added in the input is available on the $scope
property guess (see the Watch Expressions section in the previous screenshot).
Inside the function, we use the guess property and the original property to
calculate deviation, and then update the noOfTries property. As we return
from the function, the view updates immediately based on model changes.

Let's try to analyze a few important aspects of an AngularJS controller:

• To start with, if you are as observant as I am, you will have noticed that a
scope object ($scope) gets passed as a parameter to the controller function
(function GuessTheNumberController($scope)), almost magically! We
are nowhere calling the controller function and passing any parameter. And
you may have guessed it already; if we are not doing it, then the framework
must be responsible. How and when is something that we will discuss when
we go into scopes in greater detail.

Getting Started

[24]

• Also, if you are more observant than me, you will realize that the controller
does not reference the view! There are no DOM element references, no DOM
selection, or reading or writing. The operations that the controller performs
are always on the model data. As a consequence, the controller code is more
readable, hence more maintainable (and, of course, testable).

When it comes to writing a controller, the golden rule is never ever,
ever, ever reference the DOM element, either using plan JavaScript
or with libraries such as jQuery, in the controller. Such code does not
belong to the controller.
If you want to do DOM manipulations, use existing directives or
create your own.

• In AngularJS, unlike other frameworks, a model does not need to follow
any specific structure. We do not have to derive it from any framework class.
In fact, any JavaScript object and primitive types can act as a model. The
only requirement is that the properties should be declared on a special
object exposed by the framework called $scope. This $scope object acts as
glue between the model and view and keeps the model and view in sync
through Angular bindings (an over-simplification). This $scope object takes
up some responsibilities that in traditional MVC frameworks belonged
to the controller.

When we talk about a "scope object" or "scope", we're referring to
the $scope object. As we will see in the next section, almost every
scope object has a constrained existence and hence we simply refer
to it as scope.

So far, we have been constantly discussing a scope object or $scope. This
is an important concept to understand as it can save us from countless hours of
debugging and frustration. The next section is dedicated to learning about scopes
and using them.

Scope
Scope, as we described earlier, is a JavaScript object that binds the model properties
and behavior (functions) to the HTML view.

An important thing to realize here is that the scope object is not the
model but it references our model.

Chapter 1

[25]

This is a special object for the framework as the complete view behavior is tied to
this object. The framework creates these scope objects based on some AngularJS
constructs. The framework can create multiple scope objects, depending on how the
views are structured. The thing that we should keep in mind is that scope objects
are always created in the context of a view element and hence follow a hierarchical
arrangement similar to that of HTML elements (with some exceptions).

It will be interesting to see what scopes we have created for our app. To dig into the
available scopes, we will use an excellent chrome extension Batarang.

To use Batarang, perform the following steps:

1. Download and install this extension from the Chrome web store.
2. Navigate to the app page.
3. Open the Chrome developer console (F12).
4. Click on the AngularJS tab
5. In this tab, enable the the Enable checkbox and we are all set!

This extension does not work if the file is loaded from a local
filesystem (file:///). See issue 52 at https://github.com/
angular/angularjs-batarang/issues/52. I suggest you host
the HTML page on any development web server. Refer to the earlier
section Setting up a development server to learn how to set up a local
web server.

If we now open the Models tab, we will see two scopes: the 002 and 003 IDs (the IDs
may differ in your case) organized in a hierarchical manner, as seen in the following
screenshot:

The parent scope (002) does not have any model properties but the child scope (003)
contains all the properties and functions that we have been using as part of our app.

Getting Started

[26]

Whenever we talk about the parent-child scope or scope hierarchy, it
actually is an inheritance hierarchy. This implies that the child scope
object inherits from the parent scope object (standard JavaScript
prototypal inheritance).

It seems that we have been using this very scope (003) object to bind the view to the
model. We can check this by clicking on the small < arrow that precedes each scope
name. This should take us to this line in the HTML:

<div class="container" ng-controller="GuessTheNumberController">

Well, it looks like the scope (003) is tied to the previous div element and hence is
available within the start and end tags of the previous div. Any AngularJS view
construct that has been declared inside the previous div element can access the
scope (003) properties; in our case, this is the complete application HTML.

We can confirm this by copying the line containing the {{noOfTries}} interpolation
string and pasting it outside the previous div element. The code should look
something like this:

<div class="container" ng-controller="GuessTheNumberController">
 <!--Truncated Code-->
 <p class="text-info">No of guesses :
 {{noOfTries}}
 <p>
</div>
<p class="text-info">No of guesses :
 {{noOfTries}}<p>

If we now refresh the app, we will see two lines that should be tracking the number
of tries. Try to guess the number the first tracker will increment but there is no effect
on the second one. Please refer to the following screenshot:

Interesting! Isn't it? And it implies that all scope objects are constrained/scoped.

Angular does not create these scopes at random. There is a reason why the Guess
the Number! app has two scopes. The next section on app bootstrapping covers the
underlying cause of multiple scope creation.

Chapter 1

[27]

We have not talked about the parent scope (002) till now. If we try to click the < link
next to 002 scope, it navigates to the <body> tag with the ng-app directive. This in
fact is the root scope and was created as part of application bootstrapping. This scope
is the parent of all scope objects that are created during the lifetime of applications
and is hence called $rootScope. We will throw some more light on this scope object
in the next section where we talk about the app initialization process.

Let's summarize the key takeaways from our discussion on scope:

• Scope objects bind the view and model together.
• Scope objects are almost always linked to a view element.
• There can be more than one scope object defined for an application. In fact,

in any decent size app there are a number of scopes active during any given
time.

• More often than not, child scopes inherit from their parent scope and can
access parent scope data.

This was a gentle introduction to scopes and I believe now we should have some
basic understanding of scopes. There is more to scopes that we will be covering in
the coming chapters. Nonetheless, this should be enough to get us started.

The last topic that we will cover in this chapter is the app initialization process. This
will help us understand how and when these scope objects are created and linked to
the view HTML.

App bootstrapping
One of the important topics that we have not touched on yet is how AngularJS
initializes the app. To answer that, we will have to go back to the HTML view
and look at the <body> tag. The <body> tag is as follows:

<body ng-app="app">

The <body> tag defines an ng-app directive attribute. Wherever Angular encounters
this directive, it starts the initialization process. Since we have added ng-app to the
<body> tag, everything within the <body> tag becomes part of our AngularJS app.

This construct makes it possible for an Angular app to coexist with
other frameworks, as we can demarcate what part of HTML should
use AngularJS.

Getting Started

[28]

During this bootstrapping/initialization process Angular does the following:

• It loads the module for the application. Modules are a way for AngularJS
to organize and segregate code. As described earlier, these are containers
for various Angular artifacts. In fact, even the framework's internal
functionality is exposed through such modules.

• It sets up dependency injection (DI). DI is not very popular in the
JavaScript world but is commonplace in other programming languages.
It is basically a mechanism to inject dependencies into components that
require it instead of the component creating it itself. For example, in the
GuessTheNumberController function, we inject the dependency for $scope.
function GuessTheNumberController($scope) {

• It creates a $rootScope object, which is a scope object available at the global
level and not tied to any specific HTML fragment.

$rootScope and $scope are instances of the same class (a
constructor function). The difference is just the context in which
they are available. $rootScope is available throughout the HTML
(within ng-app) whereas $scope is always scoped by a specific
HTML element.

• It compiles the DOM starting from where ng-app is declared. In this
compilation process, the framework traverses the DOM, looks for
all directives and interpolations, and sets up the binding between the
view and model.

• Post compilation, it links the view and scope to produce a live view where
changes are synced across the model and viewed in real time as we interact
with the app.

This compilation and linking process can also lead to the creation of new scopes,
all of which depend on the directive that is being applied to the HTML node. If you
have Batarang opened, go back to the lone child scope (003) and click on the < link.
We will again land up here:

<div class="container" ng-controller="GuessTheNumberController">

Now look at the AngularJS documentation for ng-controller (https://docs.
angularjs.org/api/ng/directive/ngController). There is this quote:

Directive Info

This directive creates new scope.

Chapter 1

[29]

So, this ng-controller declaration when compiled by the framework leads to
the creation of a new scope whose visibility is limited within the earlier mentioned
<div> tag.

There are a number of other directives in Angular that cause the
creation of a new scope; this is precisely the reason why there can
be multiple scopes active during the execution of the app.

So now we know how and when these scope objects are created. We also now
understand the Angular app initialization process a little better.

The last two sections cover the tools and resources that will come in handy for us
while we make some killer apps on AngularJS.

Tools
Tools make our lives easy and we are going to share some tools that will help you
with different aspects of AngularJS development, from code writing to debugging:

• Batarang: We have mentioned and used Batarang earlier while working with
scopes. Batarang is an excellent debugging tool for an AngularJS application
and we have explored only a few features of this awesome Chrome
extension. We can install it from the Chrome web store (https://chrome.
google.com/webstore/category/apps).

• Browser Developer Console: All current browsers have excellent capabilities
when it comes to JavaScript debugging. Since we are working with
JavaScript, we can put breakpoints, add a watch, and do everything that is
otherwise possible with JavaScript. Remember, a lot of errors with code can
be detected just by looking at the browser's console window.

• jsFiddle and Plunker: jsFiddle (http://jsfiddle.net/) and Plunker
(http://plnkr.co/) are excellent playgrounds for trying out HTML, CSS,
and JavaScript code. These tools also have great versioning and sharing
capabilities that can come in handy if we want someone's help.

• IDE extensions: Many of the popular IDEs on the market have plugins/
extensions to make AngularJS development easy for us. Examples include:
Sublime Text package (https://github.com/angular-ui/AngularJS-
sublime-package), JetBrain WebStorm 8 (http://blog.jetbrains.com/
webstorm/2014/03/welcome-webstorm-8/), and TextMate bundle (https://
github.com/angular-ui/AngularJS.tmbundle). Search for support for your
specific IDE on the Internet to see if there is some helpful stuff available.

Getting Started

[30]

Resources
AngularJS is a popular framework and there is a vibrant community to support us
in all our endeavors. Together with this book there are also blogs, articles, support
forums, and plenty of help. Some of the prominent resources that will be useful are:

• Framework code and documentation: Angular documentation (https://
angularjs.org/) has been criticized a lot in the past but it has got a whole
lot better. And there is always the Angular source code, a great source of
learning.

• The AngularJS Google group (angular@googlegroups.com) and the
StackOverflow channel (http://stackoverflow.com/questions/tagged/
angularjs): Head over here if you have any questions or are struck with
some issue.

• AngularJS Google+ Channel (https://plus.google.com/+AngularJS):
This is the source of the latest happenings on the framework.

• Build with Angular (https://builtwith.angularjs.org/): People have
been creating some amazing apps using AngularJS. This site showcases such
apps and most of them have source code available for us to have a look at.

That's it! The chapter is complete and it's time to summarize what we've learned.

Summary
The journey has started and we have reached the first milestone. Despite this chapter
being entitled Getting Started, we have covered a lot of concepts that will be necessary
for us to know so as to understand the bigger picture. Our learning was derived from
our Guess the Number! app that we built and dissected throughout the chapter.

We learned about the MVC triad starting from the model and designed the model
for our Guess the Number! app. We learned how to expose the model over the scope
object and how the model drives the view in AngularJS.

We explored the view part of MVC and designed our view. We learned more about
AngularJS binding and understood the live nature of these bindings. We explored
the new AngularJS view constructs: interpolations and directives, and understood
the role expressions play in the framework.

Chapter 1

[31]

The last MVC element was the controller. We learned about the AngularJS controller
and how it works in close sync with the view to provide the necessary behavior. One
important consideration that came out of this discussion was that the controller does
not directly refer the view or manipulate it.

Once we had a good understanding of AngularJS and the MVC component, we
focused our efforts on learning about scopes. We learned how the scope is the glue
between the view and the model. We saw scope objects defined inside our game
and how changes in the model and view are synced by the framework.

To round things off, we learned about a very important process in AngularJS:
app bootstrapping. By exploring the bootstrap process, we were able to connect
the dots and answer a number of questions that related to scopes, binding, and
app initialization itself.

The groundwork has been done and now we are ready for some serious app
development on the AngularJS framework. In the next chapter, we will start
working on a more complex exercise and expose ourselves to a number of new
AngularJS constructs.

Building Our First
App – 7 Minute Workout

I hope the first chapter was intriguing enough and you want to learn more about
AngularJS. Believe me we have just scratched the surface. The framework has a lot to
offer and it strives to make frontend development with JavaScript a little less painful
and a little more enjoyable.

Keeping up with the theme of this book, we will be building a new app in AngularJS
and in the process, developing a better understanding of the framework. This app
will also help us to explore capabilities of the framework that we have not touched
on until now.

The topics we will cover in this chapter include:

• The 7 Minute Workout problem description: We detail the functionality
of the app that we will build in this chapter.

• Code organization: For our first real app, we try to understand how to
organize code, specifically AngularJS code.

• Designing the model: One of the building blocks for our app is its model.
We design the app model based on the app requirements we define.

• Understanding dependency injection: One of the core components of
AngularJS, DI helps us to keep app elements loosely coupled and testable.
We learn about the DI capabilities of the framework in this chapter.

• Implementing the controller: We implement the core workout logic using
the model created earlier. In the process we also cover some new Angular
constructs such as watches and promises.

Building Our First App – 7 Minute Workout

[34]

• Designing the view: We create the view for the 7 minute app and integrate
it with the controller. We also cover directives such as ng-src and ng-style
that are part of our app view.

• Creating a single-page app: AngularJS is all about single-page apps
(SPA). We explore the SPA capabilities of the framework by adding a start,
workout, and finish page to the app. We also cover route configuration using
$routeProvider and the routing directive ng-view.

• Working with partial views: To make the app more professional, we
add some additional features. We start with adding exercise details such
as a description, steps, and videos to the exercise page. This helps us
understand the framework's ability to include partial views using the
directive ng-include.

• Implementing a 'workout time remaining" filter: We learn about AngularJS
filters by creating one of our own that tracks the overall workout time. We
also go through some framework filters such as date, number, uppercase,
and lowercase.

• Adding the next exercise indicator using ng-if: We explore the ng-if
directive and implement a next exercise indicator using ng-if.

Let's get started. The first thing we will do is define the scope of our 7 Minute
Workout app.

What is 7 Minute Workout?
I want everyone reading this book to be physically fit. Therefore, this book should
serve a dual purpose; not only should it simulate your gray matter, but it should
also urge you to look at your physical fitness. What better way to do it than to
build an app that targets physical fitness!

7 Minute Workout is an exercise/workout plan that requires us to perform a set of
twelve exercises in quick succession within the seven minute time span. 7 Minute
Workout has become quite popular due to its benefits and the short duration of the
workout. I cannot confirm or refute the claims but doing any form of strenuous
physical activity is better than doing nothing at all. If you are interested in knowing
more about the workout, then check on this link: http://well.blogs.nytimes.
com/2013/05/09/the-scientific-7-minute-workout/.

The technicalities of the app are as follows: we perform a set of twelve exercises,
dedicating 30 seconds for each exercise. This is followed by a brief rest period before
starting the next exercise. For the app we are building, we will be taking rest periods of
10 seconds each. So the total duration comes out to be a little more than seven minutes.

http://well.blogs.nytimes.com/2013/05/09/the-scientific-7-minute-workout/
http://well.blogs.nytimes.com/2013/05/09/the-scientific-7-minute-workout/

Chapter 2

[35]

At the end of the chapter, we will have the 7 Minute Workout app that will look
something like this:

Downloading the codebase
The code for this app is available in the companion code package folder of this book
under chapter02 on the Packt website (https://www.packtpub.com/). Since we
are building the app incrementally, I have created multiple checkpoints that map
to folders such as chapter02/checkpoint1, chapter02/checkpoint2, and so on.
During the narration, I will highlight the checkpoint folder for reference. These folders
will contain the work done on the app up to that point in time.

The code is also available on GitHub (https://github.com/
chandermani/angularjsbyexample) for everyone to download.
Checkpoints are implemented as branches in GitHub. I will
also highlight which branch to checkout for each checkpoint we
encounter. The 7 Minute Workout code is available inside repository
folder, trainer.

So let's get started!

https://www.packtpub.com/
https://github.com/chandermani/angularjsbyexample
https://github.com/chandermani/angularjsbyexample

Building Our First App – 7 Minute Workout

[36]

Code organization
Since we are going to build a decent-size app in AngularJS, it becomes imperative
that we define how the code will be structured. For obvious reasons, we cannot take
the approach of putting everything into a single file as we did in the first chapter.

The basic folder structure for our web app will look like this:

The css, img, and js folders are self-explanatory. The partials folder will contain
HTML views that we will use in the app. The index.html file is the start page for the
app. Go ahead and create this folder hierarchy for the app.

Let's now understand how we should organize our JavaScript code.

Organizing the JavaScript code
To effectively organize the script code for our app, we need to be aware of the
different AngularJS constructs at our disposal. The following diagram highlights the
top-level AngularJS constructs:

Chapter 2

[37]

Everything in AngularJS can be categorized into four buckets namely: controllers,
directives, filters, and services. These constructs are neatly organized using
AngularJS modules. We have already talked about controllers and directives, the
other two are services and filters.

Services are reusable pieces of code that can be shared across controllers, directives,
filters, and services itself. Services are singleton in nature so they also provide a
mechanism for sharing data across these constructs.

Filters are a simple concept. Filters in Angular are used to transform model data
from one format to another. Filters are mostly used in combination with views.
For example, Angular filters such as date and number are used to format date and
numeric data that get rendered in the view.

This classification drives our code organization too. We need to organize our own
code by segregating components into controllers, directives, filters, and services.
Even after this grouping, what options do we have for organizing content at a file
and folder level? There are different ways to organize our Angular code in files. The
following screenshot depicts three such ways to organize any app code:

Here are the approaches in detail:

• File per component: In this approach, one file for each component type is
created. All our controllers go in controllers.js, directives in directives.
js, and so on. This approach works only for small applications where there
are a handful of controllers, directives, services, and filters. However, for any
decent-size application, maintaining this structure becomes unfeasible.

Building Our First App – 7 Minute Workout

[38]

• Folder per component: In this approach, one folder for each component type
is created. Here controllers, directives, filters, and services have designated
folders. This approach, though far superior to the first approach, has its
challenges. Navigating a codebase can become cumbersome as the size of
the project grows. Imagine navigating through tens of controllers or services
to find a relevant piece of code. Still, this organization can work well with
small projects.

• Folder per feature: This is a hybrid approach that derives from the first two
code organization approaches. In this case, we divide our JavaScript code
based on major functional areas or app features. The granularity of these
functional areas can vary based on the size of the project and how modular
the functional area is. For example, for a Human Resource (HR) product,
some of the functional areas could be Employees, Timesheet, Attendance,
Payroll, and Employee On-Boarding. The advantages of this approach
are self-evident. The code becomes more organized, easy to navigate and
manageable. Quite frequently, developers or development teams work on
specific features and all their activities are limited to a specific feature. The
folder per feature organization is ideally suited for such a setup.

Even while using the third approach, we can have common
directives, services, and filters that can potentially be used across
features. Common reusable code can be organized in some kind
of common folder.
Also keep in mind that this separation of code is logical; we can
still access components across the feature set.

For our 7 Minute Workout app, we are going to take the third approach. This might be
too much for this size of app, but it will keep the code well organized. So the folder
hierarchy of our JavaScript will look like this:

Chapter 2

[39]

You might have noticed that there is no controllers.js file; instead there is a
file named workout.js. The workout.js file will contain the controller code. The
convention we are going to follow is to use one controller file per page/view.
A feature may have multiple pages/views and hence multiple controller files.
Controller separation also makes sense due to the fact that controllers are tightly
coupled with the view whereas directives, filters, and services are shared.

There is currently only one major feature/functional area for our app and we will
name it 7MinWorkout. In later chapters, as we extend this app, we will add more
subfolders (functional areas) to the root js folder for all the new features we add. Go
ahead and create the js and 7MinWorkout folders if you have not done so already.

It is recommended that you use at least one development
server to run and test your app code.

With the folder structure in place, we can now start designing the app. The first thing
that requires our focus is the app model.

The 7 Minute Workout model
Designing the model for this app will require us to first detail the functional
aspects of the 7 Minute Workout app and then derive a model that can satisfy those
requirements. Based on the problem statement defined earlier, some of the obvious
requirements are:

• Being able to start the workout.
• Providing a visual clue about the current exercise and its progress.

This includes:
 ° Providing screenshots of the current exercise
 ° Providing step-by-step instructions to the user on how to do

a specific exercise
 ° The time left for the current exercise

• Notifying the user when the workout is completed.

Building Our First App – 7 Minute Workout

[40]

Some valuable requirements that we will add to this app are:

• The ability to pause the current workout.
• Providing information about the next exercise to follow.
• Providing audio clues so that the user can perform the workout without

constantly looking at the screen. This includes:
 ° A timer click sound
 ° Details about the next exercise
 ° Signaling that the exercise is about to start

• Showing related videos for the exercise in progress, and the ability to
play them.

As we can see, the central theme for this app is workout and exercise. Here, a
workout is a set of exercises performed in a specific order for a particular duration.
So let's go ahead and define the model for our workout and exercise.

Based on the requirements just mentioned, we will need the following details about
an exercise:

• Name: This should be unique
• Title: This is shown to the user
• A description of the exercise
• Instructions on how to perform the exercise
• Images for the exercise
• The name of the audio clip for the exercise
• Related videos

Based on the preceding description, the exercise model will look something like this:

function Exercise(args) {
 this.name = args.name;
 this.title = args.title;
 this.description = args.description;
 this.image = args.image;
 this.related = {};
 this.related.videos = args.videos;
 this.nameSound = args.nameSound;
 this.procedure=args.procedure;
}

Chapter 2

[41]

We use a JavaScript constructor function to define our model class. The args
parameter can be used to pass initial data when creating new objects for Exercise.

For the workout, we need to track:

• Name: This should be unique
• Title: This is shown to the user
• Exercises that are part of the workout
• The duration for each exercise
• The rest duration between two exercises

So the model class looks like this:

function WorkoutPlan(args) {
 this.exercises = [];
 this.name = args.name;
 this.title = args.title;
 this.restBetweenExercise = args.restBetweenExercise;
};

The exercises array will contain objects in the format {exercise: new
Exercise({}), duration:30}.

For our 7 Minute Workout app, we can work without the
WorkoutPlan model class, but I have jumped ahead as this
workout model will come in handy when we extend this
sample in the future.

These two classes constitute our model, and we will decide in the future if we need
to extend this model as we start implementing the app functionality.

JavaScript does not have the concept of a class. We are simulating
class-like usage using the constructor function.

We need to place the preceding model declarations somewhere and the controller
seems to be a good fit for it. As we did in Chapter 1, Getting Started, we are going to
build an AngularJS module to host the controller and model-specific code.

Building Our First App – 7 Minute Workout

[42]

Adding app modules
We touched upon modules in brief in the last chapter. Modules are containers for
components that are part of the framework and for components that we create.
Modules allow logical separation of components and also permit them to reference
each other.

For our 7 Minute Workout app, all the controllers, directives, services, and filters that
we create will be partitioned into multiple AngularJS modules.

To start with, we will add a root module for our app. As a convention, we add all our
module declarations in a separate file app.js, which is created in the app's js folder.
We make use of the AngularJS Module API to create a new module. Let's add the
app.js file in the js folder and add this line at the top:

angular.module('app', []);

The previous statement creates a module named app (first argument). The second
argument is an array of other module dependencies that the app module has. This
is empty for the moment as we are only dependent on the framework module. We
will talk about dependencies later in this chapter when we discuss the dependency
injection (DI) framework of AngularJS.

We treat our 7 Minute Workout app as a feature and hence we will add a module for
that too. In the same app.js file, add another module declaration, as follows:

angular.module('7minWorkout', []);

It's time now to add the controller.

The app controller
To implement the controller, we need to outline the behavior of the application.
What we are going to do in 7 Minute Workout app is:

1. Start the workout.
2. Show the workout in progress and show the progress indicator.
3. After the time elapses for an exercise, show the next exercise.
4. Repeat this process till all exercises are over.

This gives us a fair idea about the controller behavior, so let's start with the
implementation.

Add a new JavaScript file workout.js to the 7MinWorkout folder. All code detailed
in the line later goes into this file until stated otherwise.

Chapter 2

[43]

We are going to use the Module API to declare our controller and this is how it looks:

angular.module('7minWorkout').controller('WorkoutController',
 function($scope){
});

Here, we retrieve the 7minWorkout module that we created earlier in app.js
(see the Adding app modules section) using the angular.module('7minWorkout')
method and then we call the controller method on the module to register our
7minWorkout controller.

The controller method takes two arguments, first being the controller name and the
second a constructor function for the controller. We will add our implementation in
this function.

Make a note of the subtleties between creating a module and getting
a module.
The following is the code to create a new module:

angular.module('7minWorkout', []); // creates a new
module

This is how you get an existing module:
angular.module('7minWorkout'); //get an existing module

The difference is just the extra parameter []. If we use the first syntax
multiple times for the same module, it will create the module again and
override all existing module dependencies that we may have already
configured. This may result in errors like this:

Argument 'ControllerName' is not a function, got
undefined.

The function declaration for the preceding controller takes an argument $scope.
When the controller is instantiated, AngularJS injects a scope object into this
argument. The mechanism that AngularJS uses to achieve this is the topic of our
next discussion.

Dependency injection
Modules provide a way to organize code and act as containers for most of the
AngularJS constructs such as controllers, services, directives, and filters. In spite of
this segregation, these constructs might make them depend on each other, either
inside the same module or across modules.

Building Our First App – 7 Minute Workout

[44]

AngularJS provides a mechanism to manage dependencies between AngularJS
constructs in a declarative manner using dependency injection (DI). The DI pattern
is popular in many programming languages as DI allows us to manage dependencies
between components in a loosely coupled manner. With such a framework in
place, dependent objects are managed by a DI container. This makes dependencies
swappable and the overall code more decoupled and testable.

Dependency Injection 101
The idea behind DI is that an object does not create/manage its own dependencies;
instead the dependencies are provided from the outside. These dependencies are
made available either through a constructor, called constructor injection (as with
Angular), or by directly setting the object properties, called property injection.

Here is a rudimentary example of DI in action. Consider a class Component that
requires a Logger object for some logging operation.

function Component() {
 var logger = new Logger(); //Logger is now ready to be used.
}

The dependency of the Logger class is hardwired inside the component. What if we
externalize this dependency? So the class becomes:

function Component(l) {
 var logger=l;
}

This innocuous-looking change has a major impact. By adding the ability to provide
the dependency from an external source, we now have the capability to alter the
logging behavior of the Component class without touching it. For example, we have
the following lines of code:

var c1WithDBLog=new Component(new DBLogger());
var c1WithFileLog=new Component(new FileLogger());

We create two Component objects with different logging capabilities without altering
the Component class implementation. The c1WithDBLog object logs to a DB and
c1WithFileLog to a file (assuming both DBLogger and FileLogger are derived from
the Logger class). We can now understand how powerful DI is, in allowing us to
change the behavior of a component just by manipulating its dependencies.

Once DI is in place, the responsibility for resolving the dependencies falls on the
calling code or client/consumer code that wants to use the Component class.

Chapter 2

[45]

To make this process less cumbersome for the calling code, we have DI containers/
frameworks. These containers are responsible for constructing the dependencies and
providing them to our client/consumer code. The AngularJS DI framework does the
same for our controllers, directives, filters, and services.

Dependency injection in Angular
We have already seen an example of DI where the $scope object is magically injected
into the controller function:

angular.module('7minWorkout').controller('WorkoutController',
 function($scope){

Here, we instruct AngularJS that whenever it instantiates the controller, it should inject
the scope that was created as part of the ng-controller directive declaration. The
preceding line is an implicit DI. As AngularJS is creating the controller and injecting
the dependency, everything is transparent to us. We just use the injected dependencies.

To resolve dependencies, AngularJS uses name matching. For each dependency
(a parameter such as $scope) defined on the function, Angular tries to locate the
dependency from a list of components that have already been registered.

We register our components using the Module API. The
registration of the controller in the previous code is a good
example of the DI registration.

This search is done based on the name of the parameter. In the preceding
controller function declaration, we need to provide the $scope string verbatim
for DI to work. We can try this out by changing the function parameter $scope in
function($scope) to $scope1 and refreshing the browser. The developer console
will show the following error:

Error: [$injector:unpr] Unknown provider: $scope1Provider <- $scope1

The approach of using names for dependency resolution has its downsides. One of
them is that the previous code breaks when minified.

Handling minification
Minification in JavaScript is the process of removing extra characters for the source
code with the aim to reduce the overall size of the codebase. This can lead to the
removal of whitespaces/comments, shortening functions/variables, and other such
changes. There is a plethora of tools available across all development platforms to
minify script files.

Building Our First App – 7 Minute Workout

[46]

A minifier will minify the input parameter names, rendering the AngularJS DI
framework useless. Also, since most of the JavaScript code that we use in our
production environment is minified, the preceding syntax for injecting dependencies
is not very popular. This requires us to explore some other options/syntaxes for
injection dependencies.

Dependency annotations
There are two other ways to declare dependencies so that DI does not break
after minification.

• The $inject annotation: When using the controller function, we can use the
$inject annotation in the following way:
function WorkoutController($scope) {
// Controller implementation
}
WorkoutController['$inject'] = ['$scope'];
angular.module('app')
.controller('WorkoutController', WorkoutController);

We added a static property $inject to the constructor function
WorkoutController. This property points to an array that contains all
the dependencies annotated as string values. In our case, there is only one
$scope object. Note that the dependencies are injected in the controller
function based on the order they are declared within $inject array.

• The inline annotation: An alternate way of dependency declaration is to use
inline annotations in the following way:
angular.module('7minWorkout')
 .controller('WorkoutController',
 ['$scope', function($scope) {
 }]);

The second argument to the controller function is now an array instead
of a function. This array contains a list of dependencies annotated using
string literals. The last element in the array is the actual controller function
(function($scope)) with the injected dependencies. Like the $inject
injection, this too happens based on the annotation order.

Both $inject and inline annotations are a bit verbose and at times are prone to
mistakes. Be careful and always make sure that the order of annotations matches
the order of parameter declaration when used with any Angular construct.

Chapter 2

[47]

If, on the NodeJS platform, we can use tools such as ng-annotate
(https://github.com/olov/ng-annotate), allowing us to convert
the standard declaration syntax to an inline annotation format. The tool
takes the following code:

.controller('WorkoutController', function($scope){

Then, it is changed to the following:
.controller('WorkoutController', ['$scope',
 function($scope) {

Once ng-annotate is plugged into a build system, this process
can be automated allowing us to use the less verbose syntax during
development.

Henceforth, we will be using the inline annotation to declare our controller,
therefore let's change our existing controller declaration inside workout.js
to the previous format.

With this, we have covered the basics of DI in AngularJS. As we build our app, we
will be adding multiple controllers, services, and filters and will use the AngularJS
DI framework to wire them together. For now, let's continue our implementation
of the controller.

Controller implementations
Inside the controller function (function($scope){), add the declaration for the
model classes (WorkoutPlan and Exercise) that we detailed in The 7 Minute
Workout model section.

Then, add declarations of two local variables, as follows:

var restExercise;
var workoutPlan;

We will see later what they are used for.

Now add some initialization code such as this:

var init = function () {
startWorkout();
};
init();

https://github.com/olov/ng-annotate

Building Our First App – 7 Minute Workout

[48]

We declare the init method and immediately call it. This is just a convention that
we will use to signify where the controller execution starts. Inside the init method,
we call the startWorkout method that will start the workout. Let's see how to
implement this method.

For all the controller code shared in the following lines, keep
adding it inside the controller function before the init
method declaration.

The startWorkout method should load the workout data and start the first exercise.
The overall method implementation looks like this:

var startWorkout = function () {
 workoutPlan = createWorkout();
 restExercise = {
 details: new Exercise({
 name: "rest",
 title: " Relax!",
 description: " Relax a bit!",
 image: "img/rest.png",

 }),
 duration: workoutPlan.restBetweenExercise
 };
 startExercise(workoutPlan.exercises.shift());
};

We start by calling the createWorkout() function that loads the overall workout
plan. Then, we create a new restExercise exercise object that is not part of the
original workout plan to signify the rest period between two exercises. By treating
the rest period also as an exercise, we can have uniformity in implementation where
we don't have to differentiate between a rest period and an exercise in progress.

The last line starts the first exercise by calling the startExercise method with a
parameter signifying the exercise is to start. While doing so, we remove the first
exercise from the exercises array and pass it to the function.

We are still missing implementation details for the two functions that are called in
the startWorkout function namely: createWorkout and startExercise.

Chapter 2

[49]

The call to the createWorkout method sets up the initial 7 Minute Workout data. In
this function, we first create a WorkoutPlan object and then push exercise-related
data into its exercises array. The method looks something like this:

var createWorkout = function () {
 var workout = new WorkoutPlan({
 name: "7minWorkout",
 title: "7 Minute Workout",
 restBetweenExercise: 10
 });

 workout.exercises.push({
 details: new Exercise({
 name: "jumpingJacks",
 title: "Jumping Jacks",
 description: "Jumping Jacks.",
 image: "img/JumpingJacks.png",
 videos: [],
 variations: [],
 procedure: ""
 }),
 duration: 30
 });
 // (TRUNCATED) Other 11 workout exercise data.
 return workout;
 }

Exercise data has been truncated in the preceding code. The complete
exercise data is available with the companion code in the checkpoint1
folder under chapter2. Copy that data and use it.
GitHub branch: checkpoint2.1 (folder – trainer)

Make note that we are not adding the Exercise object directly to the exercises
array, but a custom object with one property called details and the other
named duration.

The other function startExercise looks like this:

var startExercise = function (exercisePlan) {
 $scope.currentExercise = exercisePlan;
 $scope.currentExerciseDuration = 0;
 $interval(function () {

Building Our First App – 7 Minute Workout

[50]

 ++$scope.currentExerciseDuration;
 }
, 1000
, $scope.currentExercise.duration);
};

Before we discuss the working of the startExercise function, there
is an important aspect of AngularJS development that we should keep
in mind: minimize the number of properties and functions that are
attached to the $scope object.

Only properties and functions that are required to be referenced in the view
should be attached to the scope object. We have tried to adhere to this principle in
our controller implementation too. All the three functions that we have declared
previously (startWorkout, createWorkout, and startExercise respectively)
are not added to the $scope object; instead they are declared as normal functions
within the controller.

Coming back to the startExercise implementation, let's try to understand what
this function is doing.

We start by initializing currentExercise and currentExerciseDuration on
the scope. The currentExercise function will track the exercise in progress and
currentExerciseDuration will track its duration.

To track the progress of the current exercise, we use the $interval service
of AngularJS.

Tracking the duration of an exercise using the
$interval service
The $interval service is a wrapper over the window.setInterval method.
The primary purpose of this service is to call a specific function continuously,
at specific intervals.

While invoking $interval, we set up a callback function (the first argument) that
gets invoked at specific intervals (the second argument) for a specific number of
times (the third argument). In our case, we set up an anonymous function that
decrements the currentExerciseDuration property after every one second (1000
ms) for the number of times defined in currentExercise.duration (configured to
30 in each exercise).

Chapter 2

[51]

Remember that, if we do not provide the third argument to the
$interval service, the callback method will be repeatedly invoked
and the process can only be stopped explicitly by calling the cancel
function of $interval.

We have now used our first AngularJS service $interval. Additionally, as explained
in the Dependency injection section, this service needs to be injected in the controller
before we can use it. So let's do it by changing the controller definition to the following:

angular.module('7minWorkout')
 .controller('WorkoutController', ['$scope', '$interval',
 function ($scope, $interval) {

Well, injecting dependency was easy!

All names starting with $ such as $scope and $interval are constructs
exposed by the framework. Using this convention, we can distinguish
between dependencies that are provided by the framework and any
custom dependencies that we use or create.
As a good practice, we should not use the $ prefix in any of our service
names.

Time to check how things are looking! We are going to create a makeshift HTML
view and test out our implementation.

Verifying the implementation
The code that we have implemented until now is available in the companion source
code provided with this book. We will use the code located in the checkpoint1
folder under chapter2.

If you have been developing along with the text, your code should be in
sync with the checkpoint1 folder code for these files:

• app.js under the js folder
• workout.js under js/7minworkout

If it is not, update your code. Once the JavaScript files match, you can
copy the index.html file from the app folder under checkpoint1
into your app folder.
GitHub branch: checkpoint2.1 (folder – trainer)

Building Our First App – 7 Minute Workout

[52]

Copy the index.html file from the source code package and paste it inside the
app folder.

Before we run the index.html page, let's inspect the file and see what is in there.
Other than the boilerplate HTML stuff, the reference to CSS at the start, the reference
to script files at the end, and navbar HTML, there are only a few lines of interest.

<body ng-app="app" ng-controller="WorkoutController">
 <pre>Current Exercise: {{currentExercise | json}}</pre>
 <pre>Time Left: {{currentExercise.duration-
 currentExerciseDuration}}</pre>

In the preceding code, we use the interpolations to show the current exercise model
data (currentExercise) and the time left for the exercise (currentExercise.
duration-currentExerciseDuration). The pipe symbol | followed by json is an
Angular filter used to format the view data. We will cover filters later in the chapter.
Open the index.html file in your browser.

It did not work! Instead, interpolation characters are displayed as it is. If we inspect
the browser console log (F12), there is an error (if you don't see it, refresh the page
after you open the browser console). The error message is as follows:

Error: [ng:areq] Argument 'WorkoutController' is not a function, got undefined

What happened? Firstly, we need to verify that our root module app loaded
correctly and is linked to the view. This link between our root module (angular.
module('app', []);) and view is established using the attribute ng-app="app"
defined on the HTML <body> tag. Since the match is done based on the module
name, the two declarations should match. In our case they do, so this is not the
problem and the root module loads perfectly. So what is the issue?

The error message says that Angular is not able to locate the WorkoutController
function. If we go back to the controller declaration, we find this:

angular.module('7minWorkout')
 .controller('WorkoutController', ['$scope', '$interval',
 function ($scope, $interval) {

The controller here is declared in a module 7minWorkout and not in the root module
app. Because of this, the DI framework is not able to locate the controller definition
as the containers are different. To fix this issue, we need to add a module level
dependency between our app's root module app and the 7minWorkout module. We
do this by updating the module declaration of app (in app.js) to this:

angular.module('app', ['7minWorkout']);

Chapter 2

[53]

In the updated module declaration now, we provide the dependencies in the second
array argument. In this case, there is only one dependency—the 7minWorkout
module. Refresh the page after this change and you will see the raw model data as
demonstrated in the following screenshot:

The model data will update after every passing second! Now we can understand
why interpolations are a great debugging tool.

We are not done yet! Wait for long enough on the index.html page, and you will
realize that the timer stops after 30 seconds and the app does not load the next
exercise data. Time to fix it!

Building Our First App – 7 Minute Workout

[54]

Implementing exercise transitions
We still need to implement the logic of transition to the next exercise. Also remember
we need to add a rest period between every exercise. We are going to implement a
getNextExercise function to determine the next exercise to transition to. Here is
how the function looks:

var getNextExercise = function (currentExercisePlan) {
 var nextExercise = null;
 if (currentExercisePlan === restExercise) {
 nextExercise = workoutPlan.exercises.shift();
 } else {
 if (workoutPlan.exercises.length != 0) {
 nextExercise = restExercise;
 }
 }
 return nextExercise;
 };

Since we are flipping between resting and exercising, this piece of code does the
same. It takes the current exercise in progress and determines what the next exercise
should be. If the current exercise is restExercise (remember we declared it in
startExercise), it then pulls the next exercise from the workout exercise array;
if not, it then returns restExercise. Then checking if (workoutPlan.exercises.
length != 0) ensures that we do not return any exercise (not even restExercise)
after the last exercise in the workout is complete. After this, the workout completes
its perpetual rest!

Now somebody needs to call this method to get the next exercise and update
the currentExercise model property. We can achieve this in two ways and the
interesting thing is that I will have to introduce two new concepts for this. Let's
start with the first approach that we are not going to take eventually but that still
highlights an important feature of AngularJS.

Using $watch to watch the models changes
To make a transition to the next exercise, we need a way to monitor the value of
currentExerciseDuration. Once this value reaches the planned exercise duration,
transition to the next exercise is required.

Working through the two app samples we know that AngularJS is capable of
updating the view when the model changes using the data binding infrastructure.
The nice thing about the framework is that this change tracking feature can be
utilized in JavaScript code too!

Chapter 2

[55]

Exploring $watch
The model tracking infrastructure of Angular is exposed over the $scope object. Till
now, we have used the scope object just to manage our model properties and nothing
else. But this scope object has much more to offer via the scope API functions. One of
the functions it provides is $watch. This function allows us to register a listener that
gets called when the scope property changes. The $watch method definition looks
like this:

$scope.$watch(watchExpression, [listener], [objectEquality]);

The first parameter, watchExpression, can be either a string expression or a
function. If the watchExpression value changes, the listener is invoked.

For a string expression, the expression is evaluated in the context of the current
scope. This implies that the string expression that we provide should only contain
properties/methods that are available on the current scope. If we pass a function as
the first argument, AngularJS will call it at predefined times called digest cycles in
the AngularJS world. We will learn about digest cycles in the following chapter.

The second parameter listener takes a function. This function is invoked with three
parameters namely newValue, oldValue, and the current scope. This is where we
write logic to respond to the changes.

The third parameter is a Boolean argument objectEquality that determines how
the inequality or change is detected. To start with, Angular not only allows us to
watch primitive types such as strings, numeric, Boolean, and dates, but also objects.
When objectEquality is false, strict comparison is done using the !== operator. For
objects, this boils down to just reference matching.

However, when objectEquality is set to true, AngularJS uses an angular.equals
framework function to compare the old and new values. The documentation for this
method at https://docs.angularjs.org/api/ng/function/angular.equals
provides details on how the equality is established.

To understand how objects are compared for inequality, it is best to look at
some examples.

This gives a watch expression:

$scope.$watch('obj',function(n,o){console.log('Data changed!');});

https://docs.angularjs.org/api/ng/function/angular.equals

Building Our First App – 7 Minute Workout

[56]

These changes to $scope.obj will trigger the watch listener:

$scope.obj={}; // Logs 'Data changed!'
$scope.obj=obj1; // Logs 'Data changed!'
$scope.obj=null; // Logs 'Data changed!'

Whereas these will not:

$scope.obj.prop1=value; // Does not log 'Data changed!'
$scope.obj.prop2={}; // Does not log 'Data changed!'
$scope.obj=$scope.obj; // Does not log 'Data changed!'

In the preceding scenarios, the framework is not tracking internal object changes.

Instead, let's set the third parameter to true:

$scope.$watch('obj', function(n,o){console.log('Data
 changed!'},true);

All the previous changes will trigger the listener except the last one.

I have created a jsFiddle link (http://jsfiddle.net/cmyworld/
WL3GT/) to highlight the differences between the two approaches.
jsFiddle uses two objects: obj and obj1. Also, since Angular change
detection is not real-time but dependent upon digest cycle execution,
I had to wrap model updates in the $timeout service that triggers a
digest cycle when time lapses. $timeout like $interval is an Angular
service that calls a function after a specific duration but only once.

If we watch an object with objectEquality set to true then keep in mind that the
framework does not tell which property in the object has changed. To do this, we
need to manually compare the new object (n) and the old object (o).

Do these watches affect performance? Yes, a little. To perform comparison between the
new and old values of a model property, Angular needs to track the last value of the
model. This extra bookkeeping comes at a cost and each $watch instance that we add
or is added by the framework does have a small impact on the overall performance.
Add to that the fact that, if objectEquality is set to true, Angular has to now keep
a copy of complete objects for the purpose of detecting model changes. This might
not be a problem for standard pages, but for large pages containing a multitude of
data-bound elements the performance can get affected. Therefore, minimize the use
of object equality and keep the number of view bindings under control.

http://jsfiddle.net/cmyworld/WL3GT/
http://jsfiddle.net/cmyworld/WL3GT/

Chapter 2

[57]

Other than the $watch method that watches an expression on
scope, AngularJS also supports watching a collection using the
$watchCollection function. The function syntax is:

$watchCollection(expression, listener);

Here, an expression can be an object or array property on scope. For an
object, the listener is fired whenever a new property is added or removed
(remember JavaScript allows this). For an array, the listener is fired
whenever elements are added, removed, and moved in the array. The
listener callback function is called with three parameters:

• newCollection: This denotes new values of a collection.
• oldCollection: This denotes old values of a collection. The

values are calculated only if we use this parameter.
• scope: This denotes the current scope object.

With this basic understanding of $watch in place, let's go ahead and add some
controller logic.

Implementing transitions using $watch
In our Workout controller, we need to add a watch that tracks
currentExerciseDuration. Add the following code to the WorkoutController
function:

$scope.$watch('currentExerciseDuration', function (nVal) {
 if (nVal == $scope.currentExercise.duration) {
 var next = getNextExercise($scope.currentExercise);
 if (next) {
 startExercise(next);
 } else {
 console.log("Workout complete!")
 }
 }
});

We add a watch on currentExerciseDuration and whenever it approaches the
total duration of the current exercise (if (nVal == $scope.currentExercise.
duration)), we retrieve the next exercise by calling the getNextExercise function
and then start that exercise. If the next exercise retrieved is null, then the workout
is complete.

With this, we are ready to test our implementation. So, go ahead and refresh the
index. Exercises should flip after every 10 or 30 seconds. Great!

Building Our First App – 7 Minute Workout

[58]

But, as we decided earlier, we are not going to use the $watch approach. There is a
slightly better way to transition to the next exercise where we do not require setting
up any watch. We will be using the AngularJS Promise API to do it.

Using the AngularJS Promise API for exercise
transitions
The concept of promise is not unique to AngularJS. Promise specifications have
been implemented by multiple JavaScript libraries. AngularJS uses one such
implementation that is inspired by Kris Kowal's Q (https://github.com/
kriskowal/q). AngularJS exposes the implementation over the $q service that allows
us to create and interact with promises. However, the question is what a promise is
and why do we require it?

The basics of promises
Browsers execute our JavaScript code on a single thread. This implies that we cannot
have any blocking operation as it will freeze the browser and hence counts as a bad
user experience. Due to this reason, a number of JavaScript API functions such as
functions related to timing events (setTimeout and setInterval) and network
operations (XMLHttpRequest) are asynchronous in nature. This asynchronous
behavior requires us to use callbacks for every asynchronous call made. Most of
us have used the ajax() API of jQuery and provided a function callback for a
complete/success variable in the config object.

The problem with callbacks is that they can easily become unmanageable. To
understand this, let's look at this example from the Q documentation:

step1(function (value1) {
 step2(value1, function(value2) {
 step3(value2, function(value3) {
 step4(value3, function(value4) {
 // Do something with value4
 });
 });
 });
});

https://github.com/kriskowal/q
https://github.com/kriskowal/q

Chapter 2

[59]

With a promise library, callbacks such as the one just mentioned can be
converted into:

Q.fcall(promisedStep1)
.then(promisedStep2)
.then(promisedStep3)
.then(promisedStep4)
.then(function (value4) {
 // Do something with value4
})
.catch(function (error) {
 // Handle any error from all above steps
})
.done();

The power of chaining instead of nesting allows us to keep code more organized.

Technically speaking, a promise is an object that provides a value or exception in the
future for an operation that it wraps. The Promise API is used to wrap execution of
an asynchronous method. A promise-based asynchronous function hence does not
take callbacks but instead returns a promise object. This promise object gets resolved
some time in the future when the data or error from the asynchronous operation
is received.

To consume a promise, the promise API in AngularJS exposes three methods:

• then(successCallback, errorCallback, notifyCallback): This
registers callbacks for success, failure, and notification. The following are the
parameters:

 ° successCallback: This is called when the promise is resolved
successfully. The callback function is invoked with the
resolved value.

 ° errorCallback: This is called when the promise results in an
error and contains the reason for the error.

 ° notifyCallback: This is called to report the progress of a promise.
This is useful for long-running asynchronous methods that can
communicate their execution progress.

• catch(errorCallback): This is shorthand for then(null,
errorCallback).

• finally(callback): This gets called irrespective of a promise resulting
in success or failure.

Building Our First App – 7 Minute Workout

[60]

Chaining of promises is possible because the then method
itself returns a promise.

We will learn more about promises and how to implement our own promises in the
coming chapters. Nonetheless, for now we just need to consume a promise returned
by an $interval service.

The $interval service that we used to decrement the time duration of exercises
(currentExerciseDuration) itself returns a promise as shown:

$interval(function () {
 $scope.currentExerciseDuration =
 $scope.currentExerciseDuration + 1;
 }, 1000, $scope.currentExercise.duration);

This promise is resolved after the $interval service invokes the callback method
(the first argument) for $scope.currentExercise.duration (the third argument)
and in our case, 30 times is the value for a normal exercise. Therefore, we can use
the then method of the Promise API to invoke our exercise transition logic in the
promise success callback parameter. Here is the updated startExercise method
with promise implementation highlighted:

var startExercise = function (exercisePlan) {
 $scope.currentExercise = exercisePlan;
 $scope.currentExerciseDuration = 0;
 $interval(function () {
 ++$scope.currentExerciseDuration;
 }, 1000, $scope.currentExercise.duration)
 .then(function () {
 var next = getNextExercise(exercisePlan);
 if (next) {
 startExercise(next);
 } else {
 console.log("Workout complete!")
 }
 });
 };

The code inside the then callback function is the same code that we added when
using the $watch-based approach in the last section. Comment the existing $watch
code and run the app again. We should get the same results. We did it without
setting up any watch for the exercise transition.

Chapter 2

[61]

If you are having a problem with running the code, a work copy is
available in chapter2\checkpoint2 for you to try.
GitHub branch: checkpoint2.2

We have done enough work on the controller for now. If everything is set up
correctly, our view should transition between exercises during the workout. Let's
concentrate our efforts on the view.

The 7 Minute Workout view
Most of the hard work has already been done while the defining the model and
implementing the controller phase. Now we just need to skin the HTML using the
super-awesome data binding capabilities of AngularJS. It's going to be simple, sweet,
and elegant!

For the 7 Minute Workout view, we need to show the exercise name, exercise image,
a progress indicator, and time remaining. Add the following lines to index.html
inside the container div.

<div class="container body-content app-container">
 <div class="row">
 <div id="exercise-pane" class="col-sm-8 col-sm-offset-2">
 <div class="row workout-content">
 <div class="workout-display-div">
 <h1>{{currentExercise.details.title}}</h1>
 <img class="img-responsive"
 ng-src="{{currentExercise.details.image}}" />
 <div class="progress time-progress">
 <div class="progress-bar" role="progressbar"
 aria-valuenow="0" aria-valuemin="0" aria-valuemax=
 "{{currentExercise.duration}}" ng-style="{'width'
 :(currentExerciseDuration/currentExercise.duration)
 * 100 + '%'}">
 </div>
 </div>
 <h1>Time Remaining: {{
 currentExercise.duration-currentExerciseDuration}}</h1>
 </div>
 </div>
 </div>
</div>
</div>

Building Our First App – 7 Minute Workout

[62]

There is some styling done using bootstrap CSS and some custom CSS. Other than
that we have highlighted the directives and interpolations that are part of the view.
Save index.html but before we refresh the page, open the companion source code
package folder checkpoint3 under chapter2. Make sure your copy of css\app.css
and img folder match. Refresh the page and see the workout app in its full glory!

In case, your app does not work, you can take the source code from
chapter2\checkpoint3 and run it, or compare what is missing in
your own implementation.
GitHub branch: checkpoint2.3

That was pretty impressive. Again very little code was required to achieve so much.
Let's see how this view works and what new elements have been incorporated in
our view.

We can see that the workout view is driven by a model and the view itself has very
little behavior. Since we have used two new directives ng-src and ng-style, let's
discuss them.

Image path binding with ng-src
The image location comes from the exercise model. We use the exercise image
path (currentExercise.details.image) to bind to the img tag using the ng-src
directive. However, why do we need this directive? We could very well use the src
attribute of the standard HTML for the img tag instead of ng-src:

 <img class="img-responsive" src =
 "{{currentExercise.details.image}}" />

And it still works! Except for one small problem! Remember, Angular takes the
template HTML and then applies the scope object to activate the binding. Till Angular
completes this process and updates the DOM, the browser continues to render the
raw template HTML. In the raw template, the previous src attribute points to the
{{currentExercise.details.image}} string and since it is an tag, the
browser makes a GET request to this URL literally, which results in a 404 error as seen
in the screenshot. We can confirm this in the browser's consoles network log.

Chapter 2

[63]

When we use ng-src, the framework delays the evaluation of the src attribute till
the model data is available and hence none of the request fails. Therefore, it is always
advisable to use ng-src with the tag if the URL is dynamic and depends upon
the model data.

The other directive ng-style is used for progress bar style manipulation.

Using ng-style with the Bootstrap
progress bar
We use the Bootstrap progress bar (http://getbootstrap.com/
components/#progress) to provide visual clues about the exercise progress. The
progress effect is achieved by changing the CSS width property of the progress bar
like this: style="width: 60%;". AngularJS has a directive to manipulate the style
of any HTML element and the directive is aptly named ng-style.

The ng-style directive takes an expression that should evaluate to an object, where
the key is the CSS style name and the value is the value assigned to the style. For our
progress bar, we use this expression:

"{'width':(currentExerciseDuration/currentExercise.duration)
 * 100 + '%'}"

The width CSS property is set to the percentage time elapsed and converted into a
string value by concatenating it with %.

Note that we use the object notation ({}) and not the interpolation
notation ({{}}) in the previous expression.

Remember we can achieve the same effect by using the standard style attribute
and interpolation.

"{{'width:' + (currentExerciseDuration/currentExercise.duration)
 * 100 + '%'}}"

Nevertheless, ng-style helps us with its intuitive syntax and if the number of styles
to apply is more, the expression used in interpolation can become complex with lots
of string concatenation involved.

The ng-style directive is a very powerful directive as it allows us to do all types
of CSS manipulation and drive them through model changes, as we saw with the
progress bar implementation. We should still minimize its usage as inline styling
is frowned upon and less maintainable in the long run.

http://getbootstrap.com/components/#progress
http://getbootstrap.com/components/#progress

Building Our First App – 7 Minute Workout

[64]

The preferred way to style HTML elements is by using a class
attribute. Additionally, if we need dynamic behavior while applying
CSS classes, AngularJS has another supporting directive ng-class.
In the coming chapters, we will see how to use this directive to
dynamically alter page element styles.

The basic 7 Minute Workout is now complete, so let's start doing a workout now!

We will now add some bells and whistles to the app to make it look more
professional and in the process discover a little more about the framework.

Adding start and finish pages
The 7 Minute Workout app starts when we load the page but it ends with the last
exercise sticking to the screen permanently. Not a very elegant solution. Why don't
we add a start and finish page to the app? This will make the app more professional
and allow us to understand the single page nomenclature of AngularJS.

Understanding SPAs
Single page applications (SPAs) are browser-based apps devoid of any full page
refresh. In such apps, once the initial HTML is loaded, any future page navigations
are retrieved using AJAX as HTML fragments and injected into the already loaded
view. Google Mail is a great example of a SPA. SPAs supply a great user experience
as the user gets what resembles a desktop app, with no constant post-backs and page
refreshes that are typically associated with traditional web apps.

One of the primary intentions of AngularJS was to make SPA development easy.
Therefore, it contains a host of features to support the SPA development. Let's
explore them and add our app pages too.

View layouts for SPAs using ng-view
To use the SPA capabilities of the framework, the view HTML needs to be
augmented with some new constructs. Let's alter the index.html file and make it
ready for use as a SPA view template. Add this piece of HTML inside the <body> tag,
after the navbar declaration:

<div class="container body-content app-container">
 <div ng-view></div>
</div>

Chapter 2

[65]

In the preceding HTML, we are setting up a nested div structure. The inner div
has a new directive declaration, ng-view. The immediate question is, what does
this directive do?

Well, HTML elements with this ng-view directive act as a container that hosts partial
HTML templates received from the server. In our case, the content of the start,
workout, and finish pages will be added as inner HTML to this div. This will happen
when we navigate across these three pages.

For the framework to know which template to load at what time (inside the ng-view
div element), it works with an Angular service named $route. This $route service
is responsible for providing routing and deep-linking capabilities
in AngularJS.

However, before we can use the $route service, we need to configure it. Let's try to
configure the service to make things clearer.

Defining 7 Minute Workout routes
The standard Angular $route service is not part of the core Angular module but
defined in another module ngRoute. Hence, we need to import it in a similar manner
to the way we imported the 7minWorkout module. So go ahead and update the app.
js file with the ngRoute module dependency.

angular.module('app', ['ngRoute', '7minWorkout']);

We will also need to reference the module's JavaScript file as it is not part of the
standard framework file angular.js. Add reference to the angular-route.js file
after the reference to angular.js in index.html.

<script src="http://ajax.googleapis.com/ajax/libs/angularjs/1.3.3/
 angular.js"></script>
<script src="http://ajax.googleapis.com/ajax/libs/angularjs/1.3.3/
 angular-route.js"></script>

The last part to configure is the actual routes. We need to configure the routes for
each of the three pages. Once configured, the routing service will match routes and
provide enough information to the ng-view directive to help it render the correct
partial view.

In the AngularJS world, any configurations required before the app becomes usable
are defined using the module API's config method. Components defined in any
module can use this method's callback to do some type of initialization.

Building Our First App – 7 Minute Workout

[66]

Load the app.js file and update the module declaration code for the app module to:

angular.module('app', ['ngRoute', '7minWorkout']).
config(function ($routeProvider) {
 $routeProvider.when('/start', {
 templateUrl: 'partials/start.html'
 });
 $routeProvider.when('/workout', {
 templateUrl: 'partials/workout.html',
 controller: 'WorkoutController'
 });
 $routeProvider.when('/finish', {
 templateUrl: 'partials/finish.html'
 });
 $routeProvider.otherwise({
 redirectTo: '/start'
 });
});

Before we discuss the preceding code, let's understand a bit more about module
initialization and the role of the config function in it.

The config/run phase and module initialization
AngularJS does not have a single entry point where it can wire up the complete
application. Instead, once the DOM is ready and the framework is loaded, it looks for
the ng-app directive and starts module initialization. This module initialization process
not only loads the module declared by ng-app but also all its dependent modules
and any dependencies that the linked modules have, like a chain. Every module goes
through two stages as it becomes available for consumption. It starts with:

• config: Services in modules that require initial setup are configured during
this stage. $routeProvider is a good example of this. Every app will require
a different set of routes before it can be used; therefore, these routes are
configured at the config stage. Limited DI capabilities are available at this
stage. We cannot inject services or filters as dependencies at the present time.
$routeProvider injection works as it is a special class of services called
providers. We will learn more about these special service classes such as
providers, values, and constants in forth coming chapters.

Chapter 2

[67]

• run: At this stage, the application is fully configured and ready to be
used. The DI framework can be completely utilized at this stage. Similar
to the config function, the Module API also provides a run method
callback. We can use this method to initialize stuff that we need during
application execution.

With this basic understanding of module initialization stages and the role of the
config stage, let's get back to our route configuration code.

The config function just mentioned takes a callback function that gets called
during the config stage. The function is called with the $routeProvider
dependency. We define three main routes here and one fall back route using
the $routeProvider API.

We call the when function of $routeProvider that takes two arguments:

• path: This is a bookmarkable URL to a partial view. In our code, the first
when configures /start as a route and is accessible in the browser under the
http://<hostname>/index.html#/start URL.

• routeConfig: This parameter takes route configurations. There are a number
of configuration options available but we have just used two of them.
templateUrl defines the remote path from where AngularJS will load the
HTML template. The controller function defines the Angular controller
that will be instantiated and attached to the HTML view when the browser
hits this route. We are not attaching any controller to start and finish routes
as they are mere static HTML content.

The other method $routeProvider is otherwise used for a wildcard route match.
If the route does not match any of the routes defined (/start, /workout, and /
finish), then, by default, it redirects the user to the /start route in the browser;
in other words, it loads the start page. We can verify this by providing routes such
as http://<hostname>/index.html#/abc.

Building Our First App – 7 Minute Workout

[68]

The following screenshot tries to highlight what role the index.html, ng-view, and
$route services play:

Since we have defined three partial HTML files in the route, it's time to add them to
the partial folder. Copy the start.html and finish.html files from the chapter2/
checkpoint4/partials (GitHub Branch: checkpoint2.4) and create a new file,
workout.html.

Move all the code in the div fragment <div class="row"> from index.html into
workout.html. Also remove the ng-controller declaration from the body tag. The
body tag should now read as follows:

<body ng-app="app">

The ng-controller declaration from the body tag should be removed as we have
already directed Angular to inject the WorkoutController controller function when
navigating to the #/workout route during our route configuration (see the preceding
$routeProvider config route).

Chapter 2

[69]

This is a common mistake that many newbies make. If we specify
the controller to load in the $routeProvider configuration
and also apply the ng-controller directive on the related
template HTML. Angular will create two controllers and you may
experience all types of weird behaviors such as duplicate method
calls, Ajax calls, and others.

Go ahead and refresh the index page. If you have followed our guidance, you will
land on the page with the URL such as http://<hostname>/index.html#/start.
This is our apps start page. Click on the Start button and you will navigate to the
workout page (href='#/workout'); the workout will start. To check how the finish
page looks, you need to change the URL in the browser. Change the fragment after #
character to /finish.

As of now, when the workout finishes, transitioning to the finish page does not
happen. We have not implemented this transition. The navigation from the start
page to workout was embedded in a tag (href='#/workout'). Transition to the
finish page will be done inside the controller.

View navigation in the controller using $location
If you thought we would use the $route service for navigation in our controller,
you are a tad wrong. The $route service (https://docs.angularjs.org/api/
ngRoute/service/$route) has no method to change the current route. Nonetheless,
the $route service has a dependency on another service, $location. We will use the
$location service to transition to the finish page.

Here is how the AngularJS documentation (https://docs.angularjs.org/api/
ng/service/$location) describes $location service:

The $location service parses the URL in the browser address bar (based on the
window.location) and makes the URL available to your application. Changes to the
URL in the address bar are reflected into $location service and changes to $location
are reflected into the browser address bar.

Open workout.js and replace the console.log("Workout complete!") line
with this:

$location.path('/finish');

https://docs.angularjs.org/api/ngRoute/service/$route
https://docs.angularjs.org/api/ngRoute/service/$route
https://docs.angularjs.org/api/ng/service/$location
https://docs.angularjs.org/api/ng/service/$location

Building Our First App – 7 Minute Workout

[70]

Make note of the difference in terms when referencing the paths. In
the anchor (<a>) tag, we used href='#/wokout', whereas we are
not using the # symbol with the $location.path function.

As always, we should add the dependency of the $location service to
WorkoutController, as follows:

angular.module('7minWorkout')
 .controller('WorkoutController', ['$scope', '$interval',
 '$location', function ($scope, $interval, $location) {

Since we have started our discussion on the $location service, let's explore the
capabilities of the $location service in more depth.

Working with the $location service
The $location service is responsible for providing client-side navigation for our
app. If routes are configured for an app, the location service intercepts the browser
address changes, hence stopping browser postbacks/refreshes.

If we examine the browser addresses for these routes, they contain an extra #
character and the address appears in the following manner:

http://<hostname>/index.html#/start (or #/workout or #/finish)

The # character in the URL is something we may have used to bookmark sections
within the page, but the $location service is using this bookmark-type URL to
provide correct route information. This is called the hashbang mode of addressing.

We can get rid of # if we enable HTML5 mode configuration. This setting
change has to be done at the config stage using the html5Mode method of the
$locationProvider API. Let's call this method inside the module config function:

$locationProvider.html5Mode(true);

The addresses will now look like:

http://<hostname>/start (or /workout or /finish)

However, there is a caveat. It only works as long as we don't refresh the page and
we do not type in the address of our browser directly. To have a true URL, rewrite
as shown in the preceding code. We need to add support for it on the server side
too. Remember when we are refreshing the page, we are reloading the Angular app
from the start too so URLs mentioned previously will give 404 errors as Angular
$location cannot intercept page refreshes.

Chapter 2

[71]

The $location service also enables us to extract and manipulate parts of address
fragments. The following diagram describes the various fragments of an address
and how to reference and manipulate them.

We have already made use of the path function to navigate to the finish page. That is
pretty much all we'll say about the $location service for now.

At the end we have converted our simple 7 Minute Workout into an SPA. Now we
can see how easy it was to create an SPA using AngularJS. We get all the benefit
of standard web apps: unique bookmarkable URLs for each view (page) and the
ability to move back and forward using the browser's back and forward buttons
but without those annoying page refreshes. If we show some patience after the last
exercise completes, the finish page will indeed load.

An up-to-date implementation is available in chapter2\checkpoint4.
GitHub Branch: checkpoint2.4

The app looks a little better now, so let's continue to improve the app.

Learning more about an exercise
For people who are doing this workout for the first time, it will be good to detail each
step involved for each exercise. We can also add reference to some YouTube videos
for each exercise to help the user understand the exercise better.

We are going to add the exercise description and instructions on the left panel and
call it the description panel. We will add a reference to YouTube videos on the right
panel, the video panel. To make things more modular and learn some new concepts,
we are going to create independent views for each description panel and YouTube
video panel.

Building Our First App – 7 Minute Workout

[72]

The model data for this is already available. The description and procedure
properties in the Exercise model (see Exercise declaration in workout.js) provide the
necessary details about the exercise. The related.videos array contains some
related YouTube videos.

Adding descriptions and video panels
Let's start by adding the exercise description panel. Add a new file description-
panel.html to the partial folder. Add the following content to the file:

<div>
 <div class="panel panel-default">
 <div class="panel-heading">
 <h3 class="panel-title">Description</h3>
 </div>
 <div class="panel-body">
 {{currentExercise.details.description}}
 </div>
 </div>
 <div class="panel panel-default">
 <div class="panel-heading">
 <h3 class="panel-title">Steps</h3>
 </div>
 <div class="panel-body">
 {{currentExercise.details.procedure}}
 </div>
 </div>
</div>

The previous partial code needs to be referenced in the workout page.
Open workout.html and add a new fragment, before the exercise pane div
(id='exercise-pane'), and also update the style of exercise pane div. Refer
to the following highlighted code:

<div id="description-panel" class="col-sm-2" ng-include =
 "'partials/description-panel.html'"> </div>
<div id="exercise-pane" class="col-sm-7">
 // Existing html
</div>

To add the video panel content, we will not create a file as we did for the description
panel. Instead, we will declare the video panel template inline and include it in the
workout.

Chapter 2

[73]

In the workout.html file, after the exercise pane div, add this declaration:

<div id="exercise-pane" class="col-sm-7">
 // Existing html
</div>
<div id="video-panel" class="col-sm-2" ng-include = "'
 video-panel.html'"></div>

Lastly, add this script section following the preceding div (id="video-pane"):

<script type="text/ng-template" id="video-panel.html">
 <div class="panel panel-default">
 <div class="panel-heading">
 <h3 class="panel-title">Videos</h3>
 </div>
 <div class="panel-body">
 <div ng-repeat="video in
 currentExercise.details.related.videos">
 <iframe width="330" height="220" src="{{video}}"
 frameborder="0" allowfullscreen></iframe>
 </div>
 </div>
 </div>
</script>

This script defines our video panel view template.

Now go ahead and load the workout page (#/workout) and you should see the
exercise description and instructions on the left pane.

As you will see, for some reason the videos still do not show up. The browser
console log shows the following errors:

Error: [$interpolate:interr] Can't interpolate: {{video}} Error: [$sce:insecurl] Blocked
loading resource from url not allowed by $sceDelegate policy. URL: //www.
youtube.com/embed/MMV3v4ap4ro

http://errors.angularjs.org/1.2.15/$sce/insecurl?p0=%2F%2Fwww.youtube.
com%2Fembed%2FMMV3v4ap4ro

The great thing about AngularJS error reporting is that the Angular error contains a
URL that we can navigate to to learn more about the error. In our current setup, the
videos do not load due to a security feature of AngularJS called Strict Contextual
Escaping (SCE).

Building Our First App – 7 Minute Workout

[74]

This feature restricts the loading of contents/resources into the HTML view
from untrusted sources. By default, only data from the same origin is trusted.
The same origin is defined as the same domain, protocol, and port as the
application document.

To include video content from YouTube, we need to configure explicit trust for the
http://www.youtube.com/ domain.

This configuration has to be done at the config stage using $sceDelegateProvider.
To do this, open app.js and inject the $sceDelegateProvider dependency into the
config function for the app module:

angular.module('app', ['ngRoute', '7minWorkout']).
config(function ($routeProvider, $sceDelegateProvider) {

Add this code inside the config function after the route declarations:

$sceDelegateProvider.resourceUrlWhitelist([
 // Allow same origin resource loads.
 'self',
 'http://*.youtube.com/**']);
});

In the preceding code, we use the resourceUrlWhitelist function to configure the
domains we trust. The self parameter refers to the same origin. The second array
elements add trust for http://www.youtube.com/ and its subdomains. How * and
** are interpreted has been described in the AngularJS documentation for SCE at
https://docs.angularjs.org/api/ng/service/$sce, as follows:

*: matches zero or more occurrences of any character other than one of the following
6 characters: ':', '/', '.', '?', '&' and ';'. It's a useful wildcard for use in a whitelist.

**: matches zero or more occurrences of any character. As such, it's not not
appropriate to use in for a scheme, domain, etc. as it would match too much. (e.g.
http://**.example.com/ would match http://evil.com/?ignore=.example.com/ and
that might not have been the intention.) Its usage at the very end of the path is ok.
(e.g. http://foo.example.com/templates/**).

http://www.youtube.com/
http://www.youtube.com/
https://docs.angularjs.org/api/ng/service/$sce

Chapter 2

[75]

Once $sceDelegateProvider is configured, the videos from YouTube should load.
Refresh the workout page to verify that videos show up on the right pane.

The preceding code is available in chapter2\checkpoint5 for
you to verify.
GitHub Branch: checkpoint2.5

What we have done here is define two new views and include them in our workout
HTML using a new directive: ng-include.

Working with ng-include
The ng-include directive, like the ng-view directive, allows us to embed HTML
content, but unlike ng-view it is not tied to the current route of the app. Both
ng-view and ng-include can load the template HTML from:

• Remote file location: This is a URL. This is the case with our first ng-
include directive that loads HTML from the description-panel.html
file under partials.

• Embedded scripts: We use this approach with the second ng-include
directive. The content of the second ng-include directive is embedded
within the page itself, inside a script tag:
<script type="text/ng-template" id="video-panel.html">

The ng-include directive references this script HTML using its ID
(ng-include = "'video-panel.html'"). We are free to use any ID
value and it need not end with .html.

The template script declaration should have the type set to text/ng-
template; if not, the framework will not locate it.

The ng-include directive is a perfect way to split a page into smaller, more
manageable chunks of HTML content. By doing this, we can achieve some level of
reusability as these chunks can be embedded across views or multiple times within
a single view.

Now the question arises of whether we should embed the view as script blocks or
load the partial views from a server. Loading partials from the server involves one
extra call but, once Angular gets the partial template, it caches it for future use.
Therefore, the performance hit is very small. Including templates inline can make
the page more bloated, at least while designing the view.

Building Our First App – 7 Minute Workout

[76]

AngularJS uses the $templateCache service to cache the partials that it
loads during the lifetime of the application. All partials that we reference
in ng-view and ng-include are cached for future use.
The $templateCache service is injectable and we can use
$templateCache to cache templates manually, such as
$templateCache.put('myTemplate', 'Sample template
content'). We can now reference this template in ng-view or ng-
include.

In general, if the partial view is small, it is fine to include it in the parent view as a
script block (the inline embedded approach). If the partial view code starts to grow,
using a separate file makes more sense (the server view).

Note that, in both ng-include directives, we have used quoted string values
('partials/description-panel.html' and 'video-panel.html'). This is required
as ng-include expects an expression and as always expressions are evaluated in the
context of the current scope. To provide a constant value, we need to quote it.

The use of expressions to specify a path for ng-include makes it a very powerful
directive. We can control which HTML fragments are loaded from the controller.
We can define a property or function on the scope and bind that to the ng-include
value. Now any change to the bound property will change the bound HTML
template. For example, consider this include function:

<div ng-include='template'></div>

In the controller, we can do something like this:

if(someCondition) {
 $scope.template='view1' // Loads view1 into the above div
}
else
{
 $scope.template='view2' // Loads view2 into the above div
}

The ng-include directive creates a new scope that inherits (prototypal inheritance)
from its parent scope. This implies that the parent scope properties are visible
to the child scope and hence the HTML templates can reference these properties
seamlessly. We can verify this as we reference the scope properties defined
in WorkoutController in the partials/description-panel.html and
video-panel.html partials.

Chapter 2

[77]

Another interesting directive that we have used in our video panel partials is
ng-repeat. The job of the ng-repeat directive is to append a fragment of HTML
repeatedly, based on elements in an array or the properties of an object.

Working with ng-repeat
The ng-repeat directive is a powerful and a frequently used directive. As the name
suggests, it repeats! It duplicates an HTML fragment based on an array or object
properties. We use it to generate YouTube video output in the right pane:

<div ng-repeat="video in currentExercise.details.related.videos">
 <iframe width="330" height="220" src="{{video}}" frameborder=
 "0" allowfullscreen></iframe>
</div>

The ng-repeat directive looks a bit different from standard Angular expressions.
It supports the following expression formats:

• Items in expression: We use this format for our video panel. The expression
should return an array that can be enumerated over. On each iteration of
ng-repeat, the current iterated item is assigned to items as with the video
variable mentioned earlier.

• (key,value) in expression: This syntax is used when the expression returns
an object. In JavaScript, objects are nothing but key/value hash pairs, where
we reference the value using the key. This format of ng-repeat is useful to
iterate over properties of an object.

• Items in an expression track by tracking_expression: ng-repeat responsible
for iterating over a collection and repeatedly rendering DOM content. When
items are added, removed, or moved in the underlying collection, it does
some performance optimization so that it does not have to re-create the entire
DOM again based on these model changes. It adds a tracking expression in
the form of $$hashKey (a unique key) to every element that we bind to ng-
repeat. Now, when we add or remove or move elements in the collection,
ng-repeat can add/remove and move only those specific elements. So
basically tracking expressions is used to track array element identities.

We can provide our own tracking expression for Angular using the tracking_
expression argument. This expression can be a property on the collection object.
For example, if we have a task collection returned from a server, we can use its ID
property in the following way:

task in tasks track by task.id

Building Our First App – 7 Minute Workout

[78]

With this change, Angular will use the id property of a task to track elements in
the array. This also implies that the property must be unique or we will get the
following error:

[ngRepeat:dupes] Duplicates in a repeater are not allowed. Use 'track by'
expression to specify unique keys. Repeater: task in tasks track by task.id,
Duplicate key: 1

Also see jsFiddle http://jsfiddle.net/cmyworld/n972k/ to understand how
track is used in AngularJS.

The ng-repeat directive, like ng-include, also creates a new scope. However,
unlike ng-include, it creates it every time it renders a new element. So, for an
array of n items, n scopes will get created. Just like ng-include, scopes created
by ng-repeat also inherit from the parent scope.

It will be interesting to see how many scopes are active on the workout page. Let's use
the Batarang chrome plugin for this again. Navigate to the workout page (#/workout),
open the Batarang plugin, and enable it (instructions are available in the previous
chapter). The scope hierarchy for the workout page should look something like this:

As we can see, ng-view, ng-include, and ng-repeat all create new scopes that
inherit from the parent scope. If we wait a bit and let the exercise transition happen,
we will see new scopes getting created and old ones getting destroyed (observe their
IDs 002,004). This screenshot was taken during the first exercise (jumping jack). We
can also look at the model properties attached to each scope in Batarang by clicking
on the scope links (such as Scope (006)).

http://jsfiddle.net/cmyworld/n972k/

Chapter 2

[79]

The previous screenshot also highlights what has caused the new scope to be created.
Starting from $rootScope, which is the parent of all the scopes, a scope hierarchy
has been created. In this scope hierarchy, the properties/functions defined on the
parent scope are available to the child scope to consume. We can confirm this by
looking at the two ng-include partials. These partials are referring to a property
currentExercise that has been defined on the parent scope (004).

This feature is complete. Let's now add another capability to our app and learn about
another great feature of AngularJS: filters.

Displaying the remaining workout time
using filters
It will be nice if we can tell the user the time left to complete the workout and not
just the duration of every exercise. We can add a countdown timer somewhere in the
exercise pane that shows the overall time remaining.

The approach that we are going to take here is to define a scope variable
workoutTimeRemaining. This variable will be initialized with the total time at the
start of the workout and will reduce with every passing second till it reaches zero.

Since workoutTimeRemaining is a numeric value but we want to display a timer
in the format (hh:mm:ss), we need to do a conversion between the seconds data and
the time format. AngularJS filters are a great option for implementing such features.

Creating a seconds-to-time filter
Instead of using a filter, we could implement the same logic in a method such as
convertToTime(seconds) and bind this method to the UI using something like
<h2>{{convertToTime(workoutTimeRemaining)}}</h2>; it would have worked
perfectly. However, there is a better way and that is by implementing our own filter.
Before that, let's learn a bit more about these filters.

Building Our First App – 7 Minute Workout

[80]

Understanding AngularJS filters
The primary aim of an Angular filter is to format the value of an expression
displayed to the user. Filters can be used across views, services, controllers, and
directives. The framework comes with multiple predefined filters such as date,
number, lowercase, uppercase, and others. This is how we use a filter in a view:

{{ expression | filterName : inputParam1 }}

An expression is followed by the pipe symbol |, which is followed by the filter name
and then an optional parameter (inputParam1) separated by a colon (:). Here are
some examples of the date filter. Given this date 7 August 2014, 10:30:50 in the
current time zone:

$scope.myDate=new Date(2014,7,7,10,30,50);

{{myDate}} <!--2014-08-07T05:00:50.000Z-->

{{myDate | date}} <!--Aug 7, 2014-->

{{myDate | date : 'medium'}} <!--Aug 7, 2014 10:30:50 AM-->

{{myDate | date : 'short'}} <!--8/7/14 10:30 AM-->

{{myDate | date : 'd-M-yy EEEE'}} <!--7-8-14 Thursday-->

It is not very often that we use filters inside services, controllers, or directives but if
we do need to do it, we have two options. Let's say we want to format the same date
inside a controller:

• In the first option, we inject dateFilter (make a note of the extra Filter
string that we have added to the filter name) into our controller using DI:
function MyController($scope, dateFilter)

And then use the date filter to format the date:

$scope.myDate1 = dateFilter(new Date(2014,8,7),"MMM d,
 yyyy");

• The second option is to use an inbuilt $filter service. Here we inject the
$filter service:

function MyController($scope, $filter)

And then use this service to get the date filter and call it:

$scope.myDate2 = $filter("date")(new Date(2014,8,7),"MMM d,
 yyyy");

The final result is the same.

Chapter 2

[81]

Angular has a number of inbuilt filters that come in handy during view rendering.
Some of the most used filters are:

• date: As we have seen earlier in the chapter, the date filter is used to format
the date in a specific format. This filter supports quite a number of formats
and is locale-aware too. Look at the documentation for the date filter for
more details: https://docs.angularjs.org/api/ng/filter/date.

• uppercase and lowercase: These two filters, as the name suggests, change
the case of the string input.

• number: This filter is used to format string data as numeric. If the input is
not a number, nothing is rendered.

• filter: This very confusing filter is used to filter an array based on a predicate
expression. It is often used with the ng-repeat directive such as:

exercise in workout.exercises | filter: 'push'

This code will filter all exercises where any string property on an exercise
object contains the word push. Filter supports a number of additional
options and more details are available in the official documentation
at https://docs.angularjs.org/api/ng/filter/filter.

Filters are an excellent mechanism for transforming the source model into different
formats without changing the model data itself. Whenever we have a requirement
to present data in a specific format, rather than changing the model data to suit the
presentation needs we should use AngularJS filters to achieve this. The next sections
provide a great example of this where we implement a filter that converts second
into hh:mm:ss format.

Implementing the secondsToTime filter
Our filter secondsToTime will convert a numeric value into hh:mm:ss format.
Open the filters.js file and add the following code to it:

angular.module('7minWorkout').filter('secondsToTime', function () {
 return function (input) {
 var sec = parseInt(input, 10);
 if (isNaN(sec)) return "00:00:00";

 var hours = Math.floor(sec / 3600);
 var minutes = Math.floor((sec - (hours * 3600)) / 60);
 var seconds = sec - (hours * 3600) - (minutes * 60);

 return ("0" + hours).substr(-2) + ':'
 + ("0" + minutes).substr(-2) + ':'

https://docs.angularjs.org/api/ng/filter/date
https://docs.angularjs.org/api/ng/filter/filter

Building Our First App – 7 Minute Workout

[82]

 + ("0" + seconds).substr(-2);
}
});

We again use the Module API to first retrieve the 7minWorkout module. We then
invoke the Module API method filter. The function takes two arguments: the name
of the filter and a filter function. Our filter function does not take any dependency
but we have the capability to add dependencies to this function. The function should
return a factory function that is called by the framework with the input value. This
function (function (input)) in turn should return the transformed value.

The implementation is quite straightforward as we convert seconds into hours,
minutes, and seconds. Then we concatenate the result into a string value and return
the value. The 0 addition on the left for each hour, minute, and seconds variable is
to format the value with a leading 0 in case the calculated value for hours, minutes,
or seconds is less than 10.

Before we use this filter in our view, we need to implement the workout time
remaining logic in our controller. Let's do that. Open the workout.js file
and update the WorkoutPlan constructor function by adding a new function
totalWorkoutDuration:

function WorkoutPlan(args) {
 //existing WorkoutPlan constructor function code
 this.totalWorkoutDuration = function () {
 if (this.exercises.length == 0) return 0;
 var total = 0;
 angular.forEach(this.exercises, function (exercise) {
 total = total + exercise.duration;
 });
 return this.restBetweenExercise * (this.exercises.length - 1)
 + total;
}

This method calculates the total time of the workout by adding up the time duration
for each exercise plus the number of rest durations. We use a new AngularJS library
function forEach to iterate over the workout exercise array. The angular.forEach
library takes an array as the first argument and a function that gets invoked for every
item in the array.

Now locate the startWorkout function and update it by adding these two sections:

var startWorkout = function () {
 workoutPlan = createWorkout();

Chapter 2

[83]

 $scope.workoutTimeRemaining =
 workoutPlan.totalWorkoutDuration();

 // Existing code. Removed for clarity

 $interval(function () {
 $scope.workoutTimeRemaining = $scope.workoutTimeRemaining
 - 1;
 }, 1000, $scope.workoutTimeRemaining);

 startExercise(workoutPlan.exercises.shift());
};

We assign totalWorkoutDuration for the workout plan to $scope.
workoutTimeRemaining and at the end of the method before calling startExercise,
we add another $interval service to decrement this value after every second, for a
total of workoutTimeRemaining times.

That was easy and quick. Now it's time to update the view. Go to workout.html and
add the highlighted line in the following code:

<div class="workout-display-div">
 <h4>Workout Remaining - {{workoutTimeRemaining |
 secondsToTime}}</h4>
 <h1>{{currentExercise.details.title}}</h1>

Now, every time the expression workoutTimeRemaining changes, the filter will
execute again and the view will get updated. Save the file and refresh the browser.
We should see a countdown timer for the workout!

Wait a minute. The total workout duration shown is 7 minutes 50 seconds not 7
minutes. Well, that's not a problem with our calculation even though the total
workout duration indeed is 7:50 minutes. Basically, this is a sub-8 minute workout
so we call it 7 Minute Workout!

Building Our First App – 7 Minute Workout

[84]

The app so far is available in chapter2\checkpoint6
for your reference.
GitHub Branch: checkpoint2.6

Before we conclude this chapter, we are going to add one last enhancement that will
add to the usability of the app. We will show the name of the next exercise during
the rest periods.

Adding the next exercise indicator
using ng-if
It will be nice for the user to be told what the next exercise is during the short rest
period after each exercise. This will help in preparing for the next exercise. So let's
add it.

To implement this feature, we would simply output the title of the exercise from
the first element in the workoutPlan.exercises array in a label during the rest
stage. This is possible because transitioning to the next exercise involves removing
the exercise object from the workoutPlan.exercises array and returning it.
Therefore, the array is shrinking after each exercise and the first element in the array
always points to the exercise that is due. With this basic understanding in place, let's
start the implementation.

We will show the next exercise next to the Time Remaining countdown section.
Change the workout div (class="workout-display-div") to include the
highlighted content.

<div class="workout-display-div">
 <!-- Exiting html -->
 <div class="progress time-progress">
 <!-- Exiting html -->
 </div>
 <div class="row">
 <h3 class="col-sm-6 text-left">Time Remaining:
 {{currentExercise.duration-currentExerciseDuration
 }}</h3>
 <h3 class="col-sm-6 text-right" ng-if=
 "currentExercise.details.name=='rest'">Next up:
 {{workoutPlan.exercises[0].details.title}
 }</h3>
 </div>
</div>

Chapter 2

[85]

We wrap the existing Time Remaining h1 and add another h3 to show the next
exercise inside a new div (class="row") and update some styles. Also, there is a
new directive ng-if in the second h3.

The ng-if directive is used to add or remove a specific section of DOM based on
whether the expression provided to it returns true or false. The DOM element gets
added when the expression evaluates to true. We use this expression with our ng-if
declaration:

ng-if="currentExercise.details.name=='rest'"

The condition checks whether we are currently at the rest phase. We are using the
rest exercise name property to do the match.

Other than that, in the same h3 we have an interpolation that shows the name of the
exercise from the first element of the workoutPlan.exercises array.

The ng-if directive belongs to the same category of directives that show/hide
content based on a condition. We covered the ng-show directive in the previous
chapter and there is another directive, ng-hide, that does the opposite of what
ng-show does. The difference between ng-if and ng-show/ng-hide is that ng-if
creates and destroys the DOM element, whereas ng-show/ng-hide achieves the
same effect by just changing the display CSS property of the HTML element to none.

With ng-if, whenever the expression changes from false to true, a complete
re-initialization of the ng-if content happens. A new scope is created and watches
are set up for data binding. If the inner HTML has ng-controller or directives
defined, those are recreated and so are child scopes, as requested by these controllers
and directives. The reverse happens when the expression changes from true to false.
All this is destroyed. Therefore, using ng-if can sometimes become an expensive
operation if it wraps a large chunk of content and the expression attached to ng-if
changes very often.

There is another directive that belongs to this league: ng-switch. When defined
on the parent HTML, it can swap child HTML elements based on the ng-switch
expression. Consider this example:

 <div id="parent" ng-switch on="userType">
 <div ng-switch-when="admin">I am the Admin!</div>
 <div ng-switch-when="powerUser">I am the Power User!</div>
 <div ng-switch-default>I am a normal user!</div>
 </div>

Building Our First App – 7 Minute Workout

[86]

Here, we bind the expression userType to ng-switch. Based on the value of
userType (admin, powerUser, or any other), one of the inner div elements will be
rendered. The ng-switch-default directive is a wildcard match/fallback match
and it gets rendered when userType is neither admin nor powerUser.

We are not done yet as the {{workoutPlan.exercises[0].details.title}}
interpolation refers to the workoutPlan object, but this property is not available
on the current scope in WorkoutController. To fix this, open the workout.js file
and replace all instances of workoutPlan with $scope.workoutPlan. And finally,
remove the following line:

var workoutPlan;

Refresh the workout page; during the rest phase, we should see the next workout
content. It should look something like the following screenshot:

The app so far is available in chapter2\checkpoint7 for your
reference.
GitHub branch: checkpoint2.7

Well, it's time to conclude the chapter and summarize our learnings.

Summary
We started this chapter with the aim of creating an AngularJS app that is more
complex than the sample we created in the first chapter. The 7 Minute Workout app
fitted the bill and we learned a lot about the AngularJS framework while building
this app.

We started with defining the functionality of the 7 Minute Workout app. We then
focused our efforts on defining the code structure for the app. In the process, we
learned about the building blocks of AngularJS namely controllers, directives, filters,
and services and how these components need to be organized in our codebase.

Chapter 2

[87]

To build the app, we started by defining the model of the app. Once the model
was in place, we started the controller implementation. While implementing the
controller we learned about DI, services, the AngularJS watch infrastructure, and the
AngularJS Promise API.

Once we had a fully functional controller, we created a supporting view for the app.
We used some new directives: ng-src and ng-style. The ng-src directive helped
us to bind the exercise image to an HTML img tag. The ng-style directive was used
to change the style of the progress bar dynamically.

To add some improvements to the app, we then converted it into a single-page
application (SPA). We added three pages (start, workout, and finish) to the app.
During this implementation, we learned about AngularJS SPA constructs, including
ng-view, $route, and $location. We also learned about these module execution
stages: config and run.

Once the basic SPA was set up, we added some enhancements to the workout page
in terms of exercise descriptions and videos. We used the ng-include directive to
achieve this. During this task, we also covered the ng-repeat directive that was
used to iterate over the video array and render them.

Then, we covered one of the core constructs of Angular filters. We saw how to use
filters such as the date filter and how to create one.

Lastly, we learned about the ng-if directive that is used to conditionally render
DOM elements based on an expression. We used it to render notifications of the
next exercise next exercise during exercise rest periods.

We have created the basic 7 Minute Workout app. For a better user experience,
we have added some small enhancements to it too but we are still missing some
good-to-have features that would make our app more usable—such as causing
the workout to pause, audio clues for exercise progress, and things like that.
We will be building these features in the coming chapters as we learn more
about the framework.

More AngularJS Goodness
for 7 Minute Workout

If the previous chapter was about building our first useful app in AngularJS, then
this chapter is about adding a whole lot of AngularJS goodness to it. The 7 Minute
Workout app still has some rough edges/limitations that we can fix and make the
overall app experience better. This chapter is all about adding those enhancements
and features. As always, this app building process should provide us with enough
opportunities to foster our understanding of the framework and learn new things
about it.

The topics we will cover in this chapter include:

• Exercise steps formatting: We try to fix data of exercise procedure steps by
formatting the step text as HTML.

• Audio support: We add audio support to the workout. Audio clues are used
to track the progress of the current exercise. This helps the user to use the
app without constantly staring at the display screen.

• Pause/resume exercises: Pause/resume is another important feature that the
app lacks. We add workout pausing and resuming capabilities to the app.
In the process, we learn about the keyboard and mouse events supported by
Angular. We also cover one of the most useful directives in Angular that is
ng-class.

• Enhancing the Workout Video panel: We redo the apps video panel
for a better user experience. We learn about a popular AngularJS library
ui.bootstrap and use its modal dialog directive for viewing videos in
the popup.

More AngularJS Goodness for 7 Minute Workout

[90]

• AngularJS animation: Angular has a set of directives that make adding
animation easy. We explore how modern browsers do animation using
CSS transitions and keyframe animation constructs. We enable CSS-based
animation on some of our app directives. Finally, we also touch upon
JavaScript-based animation.

• Workout history tracking: One of the building blocks of AngularJS, Services,
is covered in more detail in this chapter. We implement a history tracking
service that tracks workout history for the last 20 workouts. We cover all
recipes of service creation from value, constant, to service, factory, and
provider. We also add a history view. We discover a bit more about the
ng-repeat directive and two super useful filters: filter and orderBy.

In case you have not read Chapter 2, Building Our First App – 7 Minute
Workout, I would recommend you check out the Summary section at the
end of the last chapter to understand what has been accomplished.

On a side note, I expect you to be using using the 7 Minute Workout pattern on a
regular basis and working on your physical fitness. If not, take a 7 minute exercise
break and exercise now. I insist!

Hope the workout was fun! Now let's get back to some serious business. Let's start
with formatting the exercise steps.

We are starting from where we left off in Chapter 2, Building Our First App
– 7 Minute Workout. The checkpoint7 code can serve as the base for this
chapter. Copy the code from chapter2\checkpoint7 before we start to
work on app updates.
The code is also available on GitHub (https://github.com/
chandermani/angularjsbyexample) for everyone to download.
Checkpoints are implemented as branches in GitHub.
The branch to download is:
GitHub branch: checkpoint2.7 (folder – trainer)

https://github.com/chandermani/angularjsbyexample
https://github.com/chandermani/angularjsbyexample

Chapter 3

[91]

Formatting the exercise steps
One of the sore points in the current app is the formatting of the exercise steps. It is
plain difficult to read these steps.

The steps should either have a line break (
), or formatted as an HTML list for
easy readability. This seems to be a straightforward task and we can just go ahead
and change the data that is bounded to the currentExercise.details.procedure
interpolation or write a filter than can add some HTML formatting using the line
delimiting convention (.). For quick verification, let's update the first exercise steps
in workout.js by adding break (
) after each line:

procedure: "Assume an erect position, with feet …\

Slightly bend your knees, and propel yourself …\

While in air, bring your legs out to the side about …\

Now refresh the workout page. The output does not match our expectation

The break tags were literally rendered in the browser. Angular did not render the
interpolation as HTML; instead it escaped the HTML characters.

The reason behind this behavior is strict contextual escaping (SCE) again! Do
you remember the YouTube video rendering issues? In the last chapter, we had to
configure the behavior of SCE using $sceDelegateProvider so that the YouTube
videos are rendered in the workout page.

Well, as it turns out in Angular, SCE does not allow us to render arbitrary HTML
content using interpolation. This is done to save us from all sort of attacks that are
possible with arbitrary HTML injection in a page such as cross-site scripting (XSS)
and clickjacking. AngularJS is configured to be secure by default.

More AngularJS Goodness for 7 Minute Workout

[92]

Till now, we have used ng-include and ng-view to inject HTML
templates from local and remote sources but we have not rendered model
data as HTML.

If we cannot use interpolation to bind HTML model data, there must a directive that
we can use. The ng-bind-html directive is what we are looking for.

Understanding ng-bind-html
As the name suggests, the ng-bind-html directive is used to bind model data as
HTML. If data contains HTML fragments, the AngularJS templating engine will
honor them and render the content as HTML.

Behind the scenes, ng-bind-html uses the $sanitize service to sanitize the
HTML content. The $sanitize service parses the HTML tokens and only allows
whitelisted tokens to be rendered and removes the others. This includes removal of
embedded script content such as onclick="this.doSomethingEvil()" from the
rendered HTML.

We can override this behavior if we trust the HTML source and want to add the
HTML as it is to the document element. We do this by calling the $sce.trustAsHtml
function in the controller and assigning the return value to a scope variable:

$scope.trustedHtml=$sce.trustAsHtml('<div
 onclick="this.doSomethingGood() />');

And then bind it using ng-bind-html:

<div ng-bind-html="trustedHtml"></div>

A working example of this process is available in the AngularJS documentation
for the $sanitize service (https://docs.angularjs.org/api/ngSanitize/
service/$sanitize). I have also forked the example Plunker (http://plnkr.co/
edit/IRNK3peirZaK6FqCynGo?p=preview) so that we can play with it and get a
better understanding of how input sanitization works.

Some of the key takeaways from the previous discussion are as follows:

• When it comes to rendering random HTML, AngularJS is secure by default.
It escapes HTML content by default.

• If we want to include model content as HTML, we need to use the ng-bind
-html directive. The directive too is restrictive in terms of how the HTML
content is rendered and what is considered safe HTML.

https://docs.angularjs.org/api/ngSanitize/service/$sanitize
https://docs.angularjs.org/api/ngSanitize/service/$sanitize
http://plnkr.co/edit/IRNK3peirZaK6FqCynGo?p=preview
http://plnkr.co/edit/IRNK3peirZaK6FqCynGo?p=preview

Chapter 3

[93]

• If we trust the source of the HTML content completely, we can use the $sce
service to establish explicit trust using the trustAsHtml function.

Let's return to our app implementation, as we have realized we need to use ng-bind
-html to render our exercise steps.

Using ng-bind-html with data of the exercise
steps
Here is how we are going to enable exercise step formatting:

1. Open the description-panel.html file and change the last div element
with the panel-body class from:
<div class="panel-body">
 {{currentExercise.details.procedure}}
</div>

To

<div class="panel-body" ng-bind-html
 ="currentExercise.details.procedure">
</div>

Since ng-bind-html uses the $sanitize service that is not part of the core
Angular module but is part of the ngSanitize module, we need to include
the new module dependency.
The process is similar to what we did when we included the ngRoute
dependency in Chapter 2, Building Our First App – 7 Minute Workout.

2. Open index.html and add reference to the script file angular-sanitize.js
after angular-route.js, as follows:
<script src="http://ajax.googleapis.com/ajax/libs/angularjs/1.3.3/
 angular-sanitize.js"></script>

3. Update the module dependency in app.js as follows:

angular.module('app', ['ngRoute', 'ngSanitize',
 '7minWorkout']).

That's it. Since we are not using the $sanitize service directly, we do not need to
update our controller.

More AngularJS Goodness for 7 Minute Workout

[94]

Refresh the page and the steps will have line breaks:

The app so far is available in chapter3\checkpoint1 in the companion
codebase for us to verify.
GitHub branch: checkpoint3.1 (folder – trainer)

In the preceding implementation, we added HTML line breaks (
) to the model
content (Exercise.procedure) itself. Another approach could be to keep the
content intact and instead use a filter to format the content. We can create a filter that
converts a bunch of sentences delimited by a dot (.) or a newline (\r\n) into HTML
content with either a line break or list.

I leave it up to you to try the filter-based approach. The filter usage should look
something like this:

<div class="panel-body" ng-bind-html=
 "currentExercise.details.procedure | myLineBreakFilter">

That pretty much covers how to bind HTML content from a model in AngularJS. It's
time now to add an essential and handy feature to our app, audio support.

Chapter 3

[95]

Tracking exercise progress with
audio clips
For our 7 Minute Workout app, adding sound support is vital. One cannot exercise
while constantly staring at the screen. Audio clues will help the user to perform the
workout effectively as he/she can just follow the audio instructions.

Here is how we are going to support exercise tracking using audio clues:

• A ticking clock sound tracks the progress during the exercise
• A half-way indicator sounds, indicating that the exercise is halfway through
• An exercise-completion audio clip plays when the exercise is about to end
• An audio clip plays during the rest phase and informs users about the

next exercise

Modern browsers have good support for audio. The <audio> tag of HTML5 provides
a mechanism to embed audio into our HTML content. We will use it to embed and
play our audio clips during different times in the app.

AngularJS does not have any inherent support to play/manage audio content. We
may be tempted to think that we can just go ahead and directly access the HTML
audio element in our controller and implement the desired behavior. Yes, we can
do that. In fact, this would have been a perfectly acceptable solution if we had been
using plain JavaScript or jQuery. However, remember there is a sacrosanct rule in
Angular: "Thou shalt not manipulate DOM in the AngularJS controller" and we
should never break it. So let's back off and think about what else can be done.

We touched upon the concept of directives in Chapter 1, Getting Started, and we also
learned that the DOM manipulation work belongs to AngularJS directives. Since
the base framework does not have a directive to support audio, the options we are
left with are: writing our own directive or using a third-party directive that wraps
HTML5 audio. We will take the easier route and use a third-party directive angular
-media-player (https://github.com/mrgamer/angular-media-player). Another
reason we do not plan to create our own directive is that the topic of directive
creation is a non-trivial pursuit and will require us to get into the intricacies of how
directives work. We will cover more about directives in the chapter that we have
dedicated exclusively for them.

https://github.com/mrgamer/angular-media-player

More AngularJS Goodness for 7 Minute Workout

[96]

The popularity of AngularJS has benefitted everyone using it. No
framework can cater to the ever-evolving needs of the developer
community. This void is filled by the numerous directives, services,
and filters created by the community and open-sourced for everyone
to use. We use one such directive angular-media-player. It is
always advisable to look for such readymade components first before
implementing our own.
Additionally, we should pledge to give back to the community by making
public any reusable components that we create in Angular.

Let's get started with the implementation.

Implementing audio support
We have already detailed when a specific audio clip is played in the last section.
If we look at the current implementation for the controller, the currentExercise
and currentExerciseDuration controller properties and the startWorkout and
startExercise functions are the elements of interest to us.

The workout exercises created inside createWorkout at the moment do
not reference the exercise name pronunciation audio clips (nameSound).
Update the createWorkout function with the updated version of code
from chapter3\checkpoint2\js\7MinWorkout\workout.js
before proceeding.
GitHub branch: checkpoint3.2 (folder – trainer)
After the update, each exercise would have a property as follows:
nameSound: "content/jumpingjacks.wav"

We can use the startWorkout method to start the overall time ticker sound. Then,
we can alter the startExercise method and fix the $interval call that increments
currentExerciseDuration to include logic to play audio when we reach half way.

Not very elegant! We will have to alter the core workout logic just to add support
for audio. There is a better way. Why don't we create a separate controller for audio
and workout synchronization? The new controller will be responsible for tracking
exercise progress and will play the appropriate audio clip during the exercise. Things
will be clearer once we start the implementation.

Chapter 3

[97]

To start with, download and reference the angular-media-player directive. The
steps involved are:

1. Download angular-media-player.js from https://github.com/
mrgamer/angular-media-player/tree/master/dist.

2. Create a folder vendor inside the js folder and copy the previous file.
3. Add a reference to the preceding script file in index.html after the

framework script declarations:
<script src="js/vendor/angular-media-player.js"></script>

4. Lastly, inject the mediaPlayer module with the existing module
dependencies in app.js:

angular.module('app', [..., '7minWorkout', 'mediaPlayer']).

Open workout.html and add this HTML fragment inside exercise div
(id="exercise-pane") at the very top:

 <audio media-player="ticksAudio" loop autoplay src="content/tick10s.
mp3"></audio>
 <audio media-player="nextUpAudio" src="content/nextup.mp3"></audio>
 <audio media-player="nextUpExerciseAudio"
playlist="exercisesAudio"></audio>
 <audio media-player="halfWayAudio" src="content/15seconds.wav"></
audio>
 <audio media-player="aboutToCompleteAudio" src="content/321.wav"></
audio>

In the preceding HTML, there is one audio element for each of the scenarios we need
to support:

• ticksAudio: This is used for the ticking clock sound
• nextUpAudio: This is used for the next audio sound
• nextUpExerciseAudio: This is the exercise name audio
• halfWayAudio: This gets played half-way through the exercise
• aboutToCompleteAudio: This gets played when the exercise is about to end

The media-player directive is added to each audio tag. This directive then adds a
property with the same name as the one assigned to the media-player attribute on
the current scope. So the media-player = "aboutToCompleteAudio" declaration
adds a scope property aboutToCompleteAudio.

https://github.com/mrgamer/angular-media-player/tree/master/dist
https://github.com/mrgamer/angular-media-player/tree/master/dist

More AngularJS Goodness for 7 Minute Workout

[98]

We use these properties to manage the audio player in WorkoutAudioController.

Other than the audio directives, there is also an ng-controller declaration for
WorkoutAudioController on the span container.

With the view in place, we need to implement the controller.

Implementing WorkoutAudioController
There is something different that we have done in the previous view. We have an
ng-controller declaration for WorkoutAudioController inside the existing parent
controller context WorkoutController.

WorkoutController gets instantiated as part of route resolution as we
saw in Chapter 2, Building Our First App – 7 Minute Workout, where we
defined a route, as follows:

$routeProvider.when('/workout', { templateUrl:
 'partials/workout.html', controller:
 'WorkoutController' });

Since WorkoutController is linked to ng-view, we have effectively
nested WorkoutAudioController inside WorkoutController.

This effectively creates a child MVC component within the parent MVC component.
Also, since the ng-controller directive creates a new scope, the child MVC
component has its own scope to play with. The following screenshot highlights
this hierarchy:

Chapter 3

[99]

This new scope inherits (prototypal inheritance) from the parent scope, and has
access to the model state defined on parent $scope. Such segregation of functionality
helps in better organization of code and makes implementation simple. As views
and controllers start to become complex, there are always opportunities to split a
large view into smaller manageable subviews that can have their own model and
controller as we are doing with our workout audio view and controller.

We could have moved the view template (the span container) for audio into a
separate file and included it in the workout.html file using ng-include (as done
for description-panel.html), hence achieving a true separation of components.
However, for now we are just decorating the span with the ng-controller attribute.

Let's add the WorkoutAudioController function to the workout.js file itself. Open
workout.js and start with adding the WorkoutAudioController declaration and
some customary code after the WorkoutController implementation:

angular.module('7minWorkout')
 .controller('WorkoutAudioController', ['$scope', '$timeout',
 function ($scope, $timeout) {
 $scope.exercisesAudio = [];
 var init = function () {
 }
 init();
}]);

The standard controller declaration has a skeleton init method and the
exercisesAudio property, which will store all audio clips for each exercise defined
in Exercise.nameSound.

When should this array be filled? Well, when the workout (workoutPlan) data is
loaded. When does that happen? WorkoutAudioController does not know when
it happens, but it can use the AngularJS watch infrastructure to find out. Since the
WorkoutAudioController scope has access to the workoutPlan property defined
on the parent controller scope, it can watch the property for changes. This is what we
are going to do. Add this code after the declaration of the exercisesAudio array in
WorkoutAudioController:

var workoutPlanwatch = $scope.$watch('workoutPlan', function
(newValue, oldValue) {
 if (newValue) { // newValue==workoutPlan
 angular.forEach($scope.workoutPlan.exercises,
 function (exercise) {
 $scope.exercisesAudio.push({

More AngularJS Goodness for 7 Minute Workout

[100]

 src: exercise.details.nameSound,
 type: "audio/wav"
 });
 });
 workoutPlanwatch(); //unbind the watch.
 }
});

This watch loads all the exercise name audio clips into the exercisesAudio array
once workoutPlan is loaded.

One interesting statement here is:

workoutPlanwatch();

As the comment suggests, it is a mechanism to remove the watch from an already
watched scope property. We do it by storing the return value of the $scope.$watch
function call, which is a function reference. We then can call this function whenever
we want to remove the watch, which is the case after the first loading of workoutPlan
data. Remember the workout data is not going to change during the workout.

Similarly, to track the progress of the exercise, we need to watch for the
currentExercise and currentExerciseDuration properties. Add these two
watches following the previous watch:

$scope.$watch('currentExercise', function (newValue, oldValue) {
 if (newValue && newValue !== oldValue) {
 if ($scope.currentExercise.details.name == 'rest') {
 $timeout(function () { $scope.nextUpAudio.play();}
, 2000);
 $timeout(function () {
 $scope.nextUpExerciseAudio.play(
 $scope.currentExerciseIndex + 1, true);}
, 3000);
}
 }
});

$scope.$watch('currentExerciseDuration', function (newValue,
 oldValue) {
if (newValue) {
if (newValue == Math.floor($scope.currentExercise.duration / 2)
 && $scope.currentExercise.details.name !== 'rest') {
 $scope.halfWayAudio.play();
 }
 else if (newValue == $scope.currentExercise.duration - 3) {

Chapter 3

[101]

 $scope.aboutToCompleteAudio.play();
 }
 }
});

The first watch on currentExercise is used to play the audio of the next exercise in
line during the rest periods. Since the audio for the next exercise is a combination of
two audio clips, one that echoes next-up and another that echoes the exercise name
(from the array that we have built previously using the workoutPlan watch), we
play them one after another. This is how the audio declaration for the the next-up
audio looks:

<audio media-player="nextUpAudio"
 src="content/nextup.mp3"></audio>
<audio media-player="nextUpExerciseAudio"
 playlist="exercisesAudio"></audio>

The first one is like other audio elements that take the audio using the src attribute.
However, the nextUpExerciseAudio value takes playlist, which is an array of
audio sources. During every rest period, we play the audio from one of the array
elements by calling:

$scope.nextUpExerciseAudio.play($scope.currentExerciseIndex
 + 1, true);}

To play the audio content in succession, we use $timeout to control the audio
playback order. One plays after 2 seconds and the next after 3 seconds.

The second watch on currentExerciseDuration gets invoked every second and
plays specific audio elements at mid-time and before the exercise ends.

The media-player directive exposes a number of functions/properties
on the object that it adds to the current scope. We have only used the
play method. The media-player documentation has more details on
other supported functions/properties.

Now is the time to verify the implementation, but before we do that we need to
include the audio clips that we have referenced in the code. The audio files are
located in the audio folder of the app inside chapter3/checkpoint2/app/content.

Copy the audio clips and refresh the workout page. Now we have full-fledged audio
support in 7 Minute Workout. Wait a minute, there is a small issue! The next up
exercise audio is off by one. To verify this, wait for the first exercise to complete and
the rest period to start. The next up exercise audio does not match with the exercise
that is coming up next, it is one step ahead. Let's fix it.

More AngularJS Goodness for 7 Minute Workout

[102]

Exploring the audio synchronization issue
To fix the audio synchronization issue, let's first debug and identify what is causing
the problem.

Put a breakpoint inside workoutPlan watch (inside the if condition) and start
the workout. Wait for the breakpoint to hit. When it hits, check the value of
workoutPlan.exercises:

The first time this watch is triggered (newValue is not null), the workoutPlan.
exercises array has 11 elements as seen in the previous screenshot. Nonetheless,
we added 12 exercises when we loaded the plan for the first time in startWorkout.
This is causing the synchronization issue between the next-up audio and the exercise
order. However, why do we have one element fewer?

The first line inside the startWorkout function does the necessary assignment to
workoutPlan:

$scope.workoutPlan = createWorkout();

If our understanding of watches is correct, then the watch should get triggered
as soon as we assign $scope.workoutPlan a value—in other words, whenever
$scope.workoutPlan changes.

This is not the case, and it can be confirmed by debugging the startWorkout
function. The watch does not trigger while we are inside startWorkout and well
beyond that. The last line of startWorkout is:

startExercise($scope.workoutPlan.exercises.shift());

By removing an item from the exercises array, we are one item short when the
watch actually triggers.

As it turns out, change detection/tracking does not work in real-time. Clearly, our
understanding of watches is not 100 percent correct!

Chapter 3

[103]

To fix this innocuous looking problem, we will have to dig deeper into the inner
working of Angular and then fix parts of our workout implementation.

The next section (AngularJS dirty checking and digest cycles) explores
the internal workings of the Angular framework that can become a bit
overwhelming if we have just started learning this framework. Feel free
to skip this section and revisit it in the future. We will summarize our
understanding of Angular dirty checking and digest cycle execution at the
end of the section, before we actually fix the audio synchronization issue.

AngularJS dirty checking and digest cycles
Let's step back and try to understand how the AngularJS watch infrastructure works.
How is it able to update HTML DOM on model data changes? Remember HTML
directives and interpolations too use the same watch infrastructure.

The properties that we watch in Angular are standard JavaScript objects/values and
since JavaScript properties (at least till now) are not observable, there is no way for
Angular to know when the model data changed.

This raises the fundamental question: how does AngularJS detect these changes?

Well, AngularJS detects changes only when the $scope.$apply(exp) function
is invoked. This function can take an argument exp that it evaluates in the
current scope context. Internally, $apply evaluates exp and then calls the
$rootScope.$digest() function.

The call to $digest() triggers the model change detection process. The immediate
question that comes to mind is: "when is $apply called and who calls it?" Before we
can answer this question, it would be good to know what happens in the digest cycle.

The invoking of the $digest() function on $rootScope in the Angular world is
called the digest cycle. It is termed as cycle because it is a repeating process. What
happens during the digest loop is that Angular internally starts two smaller loops
as follows:

• The $evalAsync loop: $evalAsync is a method on the $scope object that
allows us to evaluate an expression in an asynchronous manner before the
next digest loop runs. Whenever we register some work with $evalAsync,
it goes into a list. During the $evalAsync loop, items in this list are evaluated
till the list is empty and this ends the loop. We seldom need it; in fact I have
never used it.

More AngularJS Goodness for 7 Minute Workout

[104]

• The $watch list loop. All the watches that we register, or are registered by
the framework directives and interpolations, are evaluated in this loop.
To detect the model changes, Angular does something called as dirty
checking. This involves comparing the old value of the model property
with the current value to detect any changes. For this comparison to work,
Angular needs to do some book keeping that involves keeping track of the
model value during the last digest cycle.
If the framework detects any model changes from the last digest cycle, the
corresponding model watch is triggered. Interestingly, this watch triggering
can lead to a change in model data again, hence triggering another watch.
For example, if the $watch callback updates some model data on the scope
that is being watched by another watch expression, another watch will
get triggered.
Angular keeps reevaluating the watch expression until no watch gets
triggered or, in other words, the model becomes stable. At this moment,
the watch list loop ends.

To safeguard against an infinite loop, the watch list loop runs only 10
times after which an error is thrown and this loop is terminated. We will
see an error like this in the developer console:
Uncaught Error: 10 $digest() iterations reached.
Aborting!

We should be careful when updating the scope data in a watch. The
update should not result in an infinite cycle. For example, if we update
the same property that is being watched inside the watch callback, we
will get an error.

When both the $evalAsync and $watch loops are complete, AngularJS updates the
HTML DOM and the digest cycle itself ends.

An important thing that needs to be highlighted here is that the digest cycle
evaluates every model property being watched in any scope across the application.
This may seem inefficient at first as on each digest cycle we evaluate each and every
property being watched irrespective of where the changes are made, but this works
very well in real life.

See the answer at http://stackoverflow.com/questions/
9682092/databinding-in-angularjs/9693933#9693933 by
Misko (creator of Angular!) to know why it is not such a bad idea to
implement dirty checking in this manner.

http://stackoverflow.com/questions/ 9682092/databinding-in-angularjs/9693933#9693933
http://stackoverflow.com/questions/ 9682092/databinding-in-angularjs/9693933#9693933

Chapter 3

[105]

The only missing piece of the model change tracking jigsaw is: when is $scope.$apply
called or when does the digest cycle run? Till now we have never invoked the
$scope.$apply method anywhere.

Angular made a very plausible assumption about when the model can change.
It assumes model data can get updated on events such as user interaction (via the
mouse and keyboard), form field updates, Ajax calls, or timer functions such as
setTimeout and setInteval. It then provided a set of directives and services that
wrap these events and internally call $scope.$apply when such events occur.

Here is a source code snippet (simplified) from the ng-click directive in AngularJS:

element.on("click", function(event) {
 scope.$apply(function() {
 fn(scope, {$event:event});
 });
 });

The element.on method is a jQuery- (or jqlite)-based method that adds an event
handler for click events. When the mouse click event occurs, the event handler calls
scope.$apply, hence triggering the digest cycle. It is precisely for this reason that
we do not litter our implementation with calls to $scope.$apply() everywhere.

Summarizing our learnings
To recap:

• An Angular watch does not trigger as soon as a model being
watched changes.

• A watch is only triggered during a digest cycle. A digest cycle is in an
iterative process during which Angular compares the old and new values
of the watched expression for changes. If the value changes, the watch is
triggered. Angular does this for all watches that we create and the ones
created by the framework to support data binding.

• A digest cycle is triggered by calling $scope.$apply. The framework calls
$scope.$apply at various times during the app execution. For example,
when a button is clicked, or when $interval lapses.

The concept of the digest cycle is very important to understand once we get into
serious AngularJS development. This can save us countless hours of debugging
and frustration that accompanies it. In the next section, we will make use of this
newfound understanding of the digest cycle to fix the audio synchronization issue.

More AngularJS Goodness for 7 Minute Workout

[106]

Fixing the next-up exercise's audio synchronization
issue
Now that we know what the digest cycle is, and that change detection is not
real-time, things start to make sense. The workoutPlan watch did not trigger
between these two calls in startWorkout:

var startWorkout = function () {
 $scope.workoutPlan = createWorkout();
 // Existing code
 startExercise($scope.workoutPlan.exercises.shift());
 }

Here, the exercise and exercise audio arrays went out of sync. Let's fix it.

Removing elements from the exercise array after each exercise is a suboptimal
implementation as we have to build this array every time the workout starts. It
will be better if we do not alter the array once the exercise starts and instead use
the currentExerciseIndex property with the exercises array to always locate the
current exercise in progress.

Go ahead and copy the updated WorkoutController functions: startWorkout,
startExercise, and getNextExercise from workout.js located in chapter2/
checkpoint2/app/js/7MinWorkout.

The updated functions now are using the currentExerciseIndex instead of
removing items from the exercises array.

There is a fix required in workout.html too. Update the highlighted code:

<h3 class="col-sm-6 text-right" ng-if=
 "currentExercise.details.name=='rest'">Next up:
 {{workoutPlan.exercises[currentExerciseIndex +
 1].details.title}}</h3>

Now, the upcoming audio should be in sync with the next exercise. We can verify it
by running the workout again and listening to the upcoming exercise audio during
the rest period.

Chapter3\Checkpoint2 has the working version of the code that we
have implemented so far.
GitHub branch: checkpoint3.2 (folder – trainer)

Chapter 3

[107]

Other than learning about dirty checking and digest cycles, we have learned other
important things in this section too. Let's summarize them as follows:

• We have extended the workout functionality without altering the main
WorkoutController function in any way.

• Nested controllers allow us to manage subviews independently of each other
and such views are only dependent on their parent view for scope data.
This means that changes to scope properties/schemas on the parent can
affect these child views. For example, our WorkoutAudioController
function is dependent on properties with these names: currentExercise
and currentExerciseDuration and if we decide to rename/remove any of
them, we need to fix the audio view and the controller.
This also implies that we cannot move the workout audio-related view
outside the parent view due to the dependency on model data. If we want
something truly reusable, we will have to look at creating our own directive.

• DOM manipulation should be restricted to directives and we should never
do DOM manipulation in a controller.

With audio support out of the way, we are one step closer to a fully functional
app. One of the missing features that will be an essential addition to our app is the
exercise pause feature.

Pausing exercises
If you have used the app and done some physical workout along with it, you will be
missing the exercise pause functionality badly. The workout just does not stop till it
reaches the end. We need to fix this behavior.

To pause the exercise, we need to stop the timer and stop all the sound components.
Also, we need to add a button somewhere in the view that allows us to pause and
resume the workout. We plan to do this by drawing a button overlay over the exercise
area in the center of the page. When clicked, it will toggle the exercise state between
paused and running. We will also add keyboard support to pause and resume the
workout using the key binding p or P. Let's start with fixing our controller.

More AngularJS Goodness for 7 Minute Workout

[108]

Implementing pause/resume in
WorkoutController
To pause a running exercise, we need to stop the interval callbacks that are occurring
after every second. The $interval service provides a mechanism to cancel the
$interval using the promise returned (remember, as discussed in the previous
chapter, the $interval service call returns a promise). Therefore, our goal will be to
cancel the $interval service when we pause and set up this again when we resume.
Perform the following steps:

1. Open the workout.js file and declare an exerciseIntervalPromise
variable inside WorkoutController that will track the $interval promise.

2. Remove the $interval call that is used to decrement $scope.
workoutTimeRemaining. We will be using a single timer to track the overall
workout progress and individual exercise progress.

3. Refactor the startExercise method, remove the $interval call (including
the then callback implementation) completely, and replace it with a
single line:
var startExercise = function (exercisePlan) {
 // existing code
 exerciseIntervalPromise = startExerciseTimeTracking();
};

4. Add the startExerciseTimeTracking() method:

var startExerciseTimeTracking = function () {
 var promise = $interval(function () {
 ++$scope.currentExerciseDuration;
 --$scope.workoutTimeRemaining;
 }, 1000, $scope.currentExercise.duration
 - $scope.currentExerciseDuration);

 promise.then(function () {
 var next = getNextExercise($scope.currentExercise);
 if (next) {
 startExercise(next);
 } else {
 $location.path('/finish');
 }});
 return promise;
}

Chapter 3

[109]

All the logic to support starting/resuming an exercise has now been moved into this
method. The code looks similar to what was there in the startExercise function,
except the $interval promise is returned from the function in this case.

Also, instead of having a separate $interval service for tracking the overall
workout time remaining, we are now using a single $interval to increment
currentExerciseDuration and decrement workoutTimeRemaining. This
refactoring helps us to simplify the pause logic as we do not need to cancel and
start two $interval services. The number of times the $interval callback will be
triggered also has a different expression now:

$scope.currentExercise.duration - $scope.currentExerciseDuration

The currentExercise.duration is the total duration of the exercise, and
currentExerciseDuration signifies how long we have been doing the exercise.
The difference is the time remaining.

Lastly, add methods for pausing and resuming after the
startExerciseTimeTracking function:

$scope.pauseWorkout = function () {
 $interval.cancel(exerciseIntervalPromise);
 $scope.workoutPaused = true;
};
$scope.resumeWorkout = function () {
 exerciseIntervalPromise = startExerciseTimeTracking();
 $scope.workoutPaused = false;
};
$scope.pauseResumeToggle = function () {
 if ($scope.workoutPaused) {
 $scope.resumeWorkout();
 } else {
 $scope.pauseWorkout();
 }
}

The pauseWorkout function pauses the workout by cancelling the existing
interval by calling the $interval.cancel function. The cancel method takes the
exerciseIntervalPromise object (set in the startExercise function) that is the
interval promise to cancel.

The resumeWorkout method sets up the interval again by calling the
startExerciseTimeTracking() function again. Both these methods set the state
of the workout by setting the wokoutPaused variable.

More AngularJS Goodness for 7 Minute Workout

[110]

The pauseResumeToggle function acts as a toggle switch that can pause and resume
the workout alternately. We will be using this method in our view binding. So let's
shift our focus to the view implementation.

Adding the view fragment for pausing/
resuming
We need to show a pause/resume overlay div when the mouse hovers over
the central exercise area. A naïve way to add this feature would be to use the ng
-mouse* directives. However, let's do it this way and learn a bit or two about the
ng-mouse* directives.

Pausing/resuming overlays using mouse events
Open workout.html and update the exercise div with this:

<div id="exercise-pane" class="col-sm-7" ng-mouseenter =
 "showPauseOverlay=true" ng-mouseleave="showPauseOverlay=false">

Inside the preceding div element and just before the WorkoutAudioController
span, add this:

<div id="pause-overlay" ng-click="pauseResumeToggle()" ng-
show="showPauseOverlay" >
 <span class="glyphicon glyphicon-pause pause absolute-center"
 ng-class="{'glyphicon-pause' : !workoutPaused, 'glyphicon-play' :
workoutPaused}">
</div>

Also, go ahead and update the app.css file in the CSS folder with the updated file
available in chapter3/checkpoint3/app/css. We have updated app.css with
styles related to pause the overlay div element.

Now open the app.css file and comment the CSS property opacity for style #pause
-overlay. Additionally, comment the style defined for #pause-overlay:hover.

In the first div (id=exercise-pane) function, we have used some new ng-mouse*
directives available in AngularJS. These directives wrap the standard JavaScript
mouse event. As the name suggests, the ng-mouseenter directives evaluate the
expression when the mouse enters the element on which the directive is defined. The
ng-mouseleave directive is just the reverse. We use these directives to set the scope
property showPauseOverlay true or false based on the location of the mouse. Based
on the showPauseOverlay value, the ng-show="showPauseOverlay" shows/hides
the pause overlay.

Chapter 3

[111]

Refresh the workout page and we should see a pause button overlay over the
exercise area. We can click on it to pause and resume the workout.

Other directives such as ng-mousedown, ng-mousemove, and ng-mouseover are there
to support the corresponding mouse events.

Be very careful with directives such as mouseover and mousemove.
Depending upon how the HTML is set up, these directives can have a
severe impact on the performance of the page as these events are rapidly
raised on mouse movements that cause repeated evaluation of the
attached directive expression.

We seldom require using the ng-mouse* directives. Even the preceding
implementation can be done in a far better way without using ng-mouseenter or
ng-mouseleave directives.

More AngularJS Goodness for 7 Minute Workout

[112]

Pausing/resuming overlays with plain CSS
If you are a CSS ninja, you must be shaking your head in disgust after looking at the
earlier implementation. We don't need the mouse events to show/hide an overlay.
CSS has an inbuilt pseudo selector :hover for it, a far superior mechanism for
showing overlays as compared to mouse-event bindings.

Let's get rid of all the ng-mouse* directive that we used and the showPauseOverlay
variable. Remove the mouse-related directive declarations from the exercise-pane
portion of div and ng-show directive from pause-overlay div. Also uncomment
the styles that we commented in app.css in the last section. We will achieve the
same effect but this time with plain CSS.

Let's talk about other elements of the pause/resume div (id="pause-overlay")
overlay, which we have not touched on till now. On clicking on this div element, we
call the pauseResumeToggle function that changes the state of the exercise. We have
also used the ng-class directive to dynamically add/remove CSS classes based on
the state of the exercise. The ng-class directive is a pretty useful directive that is
used quite frequently, so why not learn a little more about it?

CSS class manipulation using ng-class
The ng-class directive allows us to dynamically set the class on an element based
on some condition. The ng-class directive takes an expression that can be in one of
the three formats:

• A string: Classes get applied on the base on the string tokens. Each space
-delimited token is treated as a class. The following is an example:
$scope.cls="class1 class2 class3"
ng-class="cls" // Will apply the above three classes.

• An array: Each element in an array should be a string. The following is
an example:
$scope.cls=["class1", "class2", "class3"]
ng-class="cls" // Will apply the above three classes.

• An object: Since objects in JavaScript are just a bunch of key-value maps,
when we use the object expression, the key gets applied as a class if the value
part evaluates to true. We use this syntax in our implementation:

ng-class="{'glyphicon-pause' : !workoutPaused,
 'glyphicon-play' : workoutPaused}"

Chapter 3

[113]

In this case, the glyphicon-pause (the pause icon) class is added when
workoutPaused is false, and glyphicon-play (the play icon) is added
when workoutPaused is true. Here, glyphicon-pause/glyphicon-play
is the CSS name for Bootstrap font glyphs. Check the Bootstrap site for these
glyphs http://getbootstrap.com/components/. The end result is based on
the workout state, the appropriate icon is shown.

The ng-class directive is a super useful directive, and anytime we want to support
dynamic behavior with CSS, this is the directive to use.

Let's re-verify that the pause functionality is working fine after the changes. Reload
the workout page and try to pause the workout. Everything seems to be working fine
except… the audio did not stop. Well, we did not tell it to stop so it did not! Let's fix
this behavior too.

Stopping audio on pause
We need to extend our WorkoutAudioController function so that it can react
to the exercise being paused. The approach here again will be to add a watch
on the parent scope property workoutPaused. Open workout.js and inside the
WorkoutAudioController, add this watch code before the init function declaration:

$scope.$watch('workoutPaused', function (newValue, oldValue) {
 if (newValue) {
 $scope.ticksAudio.pause();
 $scope.nextUpAudio.pause();
 $scope.nextUpExerciseAudio.pause();
 $scope.halfWayAudio.pause();
 $scope.aboutToCompleteAudio.pause();
 } else {
 $scope.ticksAudio.play();
 if ($scope.halfWayAudio.currentTime > 0 &&
 $scope.halfWayAudio.currentTime <
 $scope.halfWayAudio.duration)
 $scope.halfWayAudio.play();
 if ($scope.aboutToCompleteAudio.currentTime > 0 &&
 $scope.aboutToCompleteAudio.currentTime <
 $scope.aboutToCompleteAudio.duration)
 $scope.aboutToCompleteAudio.play();
 }
});

http://getbootstrap.com/components/

More AngularJS Goodness for 7 Minute Workout

[114]

When the workout pauses, we pause all the audio elements irrespective of whether
they are playing or not. Resuming is a tricky affair. Only if the halfway audio and
about to complete audio are playing at the time of the pause do need to continue them.
The conditional statements perform the same check. For the time being, we do not
bother with the upcoming exercise audio.

Go ahead and refresh the workout page and try to pause the workout now. This time
the audio should also pause.

Our decision to create a WorkoutAudioController object is serving us well. We have
been able to react to a pause/resume state change in the audio controller instead of
littering the main workout controller with extra code.

Let's add some more goodness to the pause/resume functionality by adding
keyboard support.

Using the keyboard to pause/resume
exercises
We plan to use the p or P key to toggle between the pause and resume state. If
AngularJS has mouse-event support, then it will definitely have support for keyboard
events too. Yes indeed and we are going to use the ng-keypress directive for this.

Go ahead and change the app container div (class="workout-app-container") to:

<div class="row workout-app-container" tabindex="1"
 ng-keypress="onKeyPressed($event)">

The first thing that we have done here is add the tabindex attribute to the div
element. This is required as keyboard events are captured by elements that can have
focus. Focus for HTML input elements makes sense but for read-only elements such
as div having keyboard focus requires tabindex to be set.

Chapter 3

[115]

The previous code captures the keypress event at the div level. If we
have to capture such an event at a global level (the document level),
we need to have a mechanism to propagate the captured event to child
controllers such as WorkoutController.
We will not be covering how to actually capture keyboard events
at the document level, but point you to these excellent resources for
more information:

• https://github.com/drahak/angular-hotkeys

• http://chieffancypants.github.io/angular-hotkeys/

• http://stackoverflow.com/questions/15044494/what
-is-angularjs-way-to-create-global-keyboard
-shortcuts

These libraries work by creating services/directives to capture
keyboard events.

Secondly, we add the ng-keypress directive and in the expression, call the
onKeyPress function, passing in a special object $event.

$event is the native JavaScript event object that contains a number of details about
the cause and source of the event. All directives that react to events can pass this
$event object around. This includes all ng-mouse*, ng-key*, ng-click, and
ng-dblclick directives and some other directives.

Open the workout.js file and add the method implementation for onKeyPressed:

$scope.onKeyPressed = function (event) {
 if (event.which == 80 || event.which == 112) { // 'p' or 'P'
 $scope.pauseResumeToggle();
 }
};

The code is quite self-explanatory; we check for the keycode value in event.which
and if it is p or P, we toggle the workout state by calling pauseResumeToggle().

There are two other directives available for keyboard-related events namely,
ng-keydown and ng-keyup. As the name suggests, these directives evaluate the
assigned expression on keydown and keyup events.

https://github.com/drahak/angular-hotkeys
http://chieffancypants.github.io/angular-hotkeys/
http://stackoverflow.com/questions/15044494/what -is-angularjs-way-to-create-global-keyboard -shortcuts
http://stackoverflow.com/questions/15044494/what -is-angularjs-way-to-create-global-keyboard -shortcuts
http://stackoverflow.com/questions/15044494/what -is-angularjs-way-to-create-global-keyboard -shortcuts

More AngularJS Goodness for 7 Minute Workout

[116]

The updated implementation is available in checkpoint3 folder
under chapter3.
GitHub branch: checkpoint3.3 (folder – trainer)

The 7 Minute Workout app is getting into better shape. Let's add another enhancement
to this series by improving the video panel loading and playback support.

Enhancing the workout video panel
The current video panel implementation can at best be termed as amateurish. The
size of the default player is small. When we play the video, the workout does not
pause. The video playback is interrupted on exercise transitions. Also, the overall
video load experience adds a noticeable lag at the start of every exercise routine
which we all would have noticed. This is a clear indication that this approach to
video playback needs some fixing.

Since we can now pause the workout, pausing the workout on video playback can
be implemented. Regarding the size of the player and the general lag at the start of
every exercise, we can fix it by showing the image thumbnail for the exercise video
instead of loading the video player itself. When the user clicks on the thumbnail,
we load a pop up/dialog that has a bigger size video player that plays the selected
video. Sounds like a plan! Let's implement it.

Refactoring the video panel and controller
To start with, let's refactor out the view template for the video panel into a separate
file as we did for the description panel. Open the workout.html file and remove the
script declaration for the video panel template (<script type="text/
ng-template" id="video-panel.html">…</script>).

Change the ng-include directive to point to the new video template:

<div id="video-panel" class="col-sm-3"
 ng-include="'partials/video-panel.html'">

Make note of the path change for the ng-include attribute; the template file will
now reside in the partials folder similar to description-panel.html.

Next, we add the video-panel.html file from partial to our app. Go ahead and
copy this file from the companion codebase chapter3/checkpoint4/app/partials.

Other than some style fixes, there are two notable changes done to the video panel
template in video-panel.html. The first one is a declaration of the new controller:

Chapter 3

[117]

<div class="panel panel-info"
ng-controller="WorkoutVideosController">

As we refactor out the video functionality, we are going to create a new controller,
WorkoutVideosController.

The second change is as follows:

<img height="220" ng-src="
 https://i.ytimg.com/vi/{{video}}/hqdefault.jpg" />

The earlier version of the template used iframe to load the video with the src
attribute set to interpolation {{video}} with the complete video URL. With the
preceding change, the video property does not point directly to a YouTube video;
instead it just contains the identifier for the video (such as dmYwZH_BNd0).

We have referenced this Stack Overflow post http://stackoverflow.com/
questions/2068344/how-do-i-get-a-youtube-video-thumbnail-from-the
-youtube-api, to determine the thumbnail image URL for our videos.

video-panel.html also contains a view template embedded in script tag:

<script type="text/ng-template" id="youtube-modal">…<script>

We will be using this template to show the video in a pop-up dialog later.

Since we plan to use the video identifier instead of the absolute URL, workout
data needs to be fixed in workout.js. Rather than doing it manually, copy the
updated workout data from the workout.js file in chapter2\checkpoint4\app\
js\7MinWorkout. The only major change here is the videos array that earlier
contained absolute URLs but now has video IDs like this:

videos: ["dmYwZH_BNd0", "BABOdJ-2Z6o", "c4DAnQ6DtF8"],

If we comment out the ng-controller="WorkoutVideosController" attribute in
the video-panel.html file and refresh the workout page, we should have a better
page load experience, devoid of any noticeable lags. Instead of videos, we now
render images.

Remember to uncomment the declaration ng-controller=
"WorkoutVideosController" before proceeding further.

However, we have lost the video replay functionality! Let's fix this too.

More AngularJS Goodness for 7 Minute Workout

[118]

Video playback in the pop-up dialog
The plan here is to open a dialog when the user clicks on the video image and plays
the video in the dialog. Once again, we are going to look at a third-party control/
component that can help us here. Well, we have a very able and popular library
to support modal pop-up dialogs in Angular, the ui.bootstrap dialog (http://
angular-ui.github.io/bootstrap/). This library consists of a set of directives that
are part of Bootstrap JavaScript components. If you are a fan of Twitter Bootstrap,
then this library is a perfect drop-in replacement that we can use.

The ui.bootstrap dialog is part of a larger package angular-ui
(http://angular-ui.github.io/) that contains a number of
AngularJS components ready to be used within our projects.

Similar to the Bootstrap modal popup, ui.bootstrap too has a modal dialog and we
are going to use it.

Integrating the ui.bootstrap modal dialog
To start with, we need to reference the ui.bootstrap library in our app. Go ahead
and add the reference to ui.bootstrap in the index.html script section after the
framework script declarations:

<script src="//cdnjs.cloudflare.com/ajax/libs/
 angular-ui-bootstrap/0.10.0/ui-bootstrap-tpls.js"></script>

Import the ui.bootstrap module in app.js:

angular.module('app', ['ngRoute', 'ngSanitize',
 '7minWorkout', 'mediaPlayer', 'ui.bootstrap']).

The ui.bootstrap module is now ready for consumption.

Now we need to add a new JavaScript file to implement the video popup. Copy the
workoutvideos.js file from chapter3\checkpoint4\app\js\7MinWorkout. Also,
add a reference to the file in index.html after the workout.js reference:

<script src="js/7MinWorkout/workoutvideos.js"></script>

Let's try to understand the important parts of workoutvideos.js.

We start with declaring the controller. Nothing new here, we are already familiar
with how to create a controller using the Module API. The only point of interest here
is the injection of the $modal service:

http://angular-ui.github.io/bootstrap/
http://angular-ui.github.io/bootstrap/
http://angular-ui.github.io/

Chapter 3

[119]

angular.module('7minWorkout')
 .controller('WorkoutVideosController', ['$scope', '$modal',
 function ($scope, $modal) {

The ui.bootstrap modal dialog is controlled by the $modal service. We were
expecting a directive for the modal dialog that we could manage through the
controller. As it turns out, the same role here is played by the $modal service.
When invoked, it dynamically injects a directive (<div modal-window></div>)
into the view HTML which finally shows up as popup.

In Angular, services normally do not interact with view elements. The
$modal service is an exception to this rule. Internally, this service uses
the $modalStack service that does DOM manipulation.

In WorkoutVideosController, we define the playVideo method that uses the
$modal service to load the video in the popup. The first thing we do in the playVideo
method is to pause the workout. Then, we call the $modal.open method to open
the popup.

The $modal.open function takes a number of arguments that affect the content and
behavior of the modal popup. Here is our implementation:

var dailog = $modal.open({
 templateUrl: 'youtube-modal',
 controller: VideoPlayerController,
 scope:$scope.$new(true),
 resolve: {
 video: function () {
 return '//www.youtube.com/embed/' + videoId;
 }
 },
 size: 'lg'
}).result['finally'](function () {
 $scope.resumeWorkout();
 });

Here is a rundown of the arguments:

• templateUrl: This is the path to the template content. In our case, we have
embedded the modal template in the script tag of the video-panel.html
file:
<script type="text/ng-template" id="youtube-modal">

More AngularJS Goodness for 7 Minute Workout

[120]

Instead of the template URL, we can provide inline HTML content to the
dialog service by using a different argument template. Not a very useful
option as readability of the template HTML is severely affected.

• controller: Like a true MVC component, this dialog allows us to attach
a controller to the dialog scope. We reference the VideoPlayController
controller function that we have declared inline. Every time the modal dialog
is opened, a new VideoPlayController object is instantiated and linked to
the modal dialog view (defined using the templateUrl path just mentioned).

We have declared the controller inline as it has no use outside the dialog.
Instead, if VideoPlayController was declared using the Module
API controller function, we will have to use alternate controller
syntax such as controller: 'VideoPlayerController', //
Using quotes ''.

• scope: This parameter can be used to provide a specific scope to the
modal dialog view. By default, the modal dialog creates a new scope
that inherits from $rootScope. By assigning the scope configuration to
$scope.$new(true), we are creating a new isolated scope. This scope
will be available inside the dialog context when it opens.

The $new function on the scope object allows us to create a new scope in
code. We rarely need to create our own scope objects as they are mostly
created as part of directive execution, but at times the $new function can
come in handy, as in this case.
Calling $new without an argument creates a new scope that inherits
(prototypal inheritance) from the scope on which the function is invoked.
Having the true parameter in $new instructs the scope API to create an
isolated scope.

In AngularJS, isolated scopes are scopes that do not inherit from their parent
scope and hence do not have access to parent scope properties. Isolated
scopes help in keeping the parent and child scopes independent of each
other, hence making the child component more reusable across the app. The
video player dialog is a simple example of this. The dialog is only dependent
upon the resolved YouTube video URL and can be used anywhere in the
application where there is a requirement to play a specific video.

We will cover isolated scopes in greater depth in the chapter dedicated to
AngularJS directives.

Chapter 3

[121]

• resolve: Since we have declared our modal scope to be an isolated scope,
we need a mechanism to pass the selected video from the parent scope to the
isolated modal dialog scope. The resolve argument solves this parameter
passing problem.
The resolve argument is an interesting parameter. It takes an object where
each property is a function and when injected with the key name (property
name) into the dialog controller, it is resolved to the function's return value.
For example, the resolve object has one property video that returns the
concatenated value of the YouTube video URL with the video ID (passed
to the playVideo function as videoId). We use the property name video
and inject it into VideoPlayerController. Whenever the dialog is loaded,
the video function is invoked and the return value is injected in the
VideoPlayerController as the property name video itself.
The resolve object hash is a good mechanism for passing specific data to the
modal dialog keeping the dialog reusable as long as the correct parameters
are passed.

• size: Used to specify the size of the dialog. We use large(lg), the other
option is small(sm).

There are a few more options available for the $modal.open function. Refer to
the documentation for ui.bootstrap.modal (http://angular-ui.github.io/
bootstrap/#/modal) for more details.

The return value of the $modal.open function also interests us and this is how
we use it:

.result['finally'](function () {
 $scope.resumeWorkout();
});

The result property on the returned object is a promise that gets resolved when the
dialog closes. The finally function callback is invoked irrespective of whether the
result promise is resolved or rejected and in the callback we just resume the workout.

The result property is not the only property on the object returned by $modal.
open. Let's understand the use of these properties:

• close(data): This function can close the dialog. The data argument is
optional and can be used to pass a value from the modal dialog to the parent
components that invoked it.

• dismiss(reason): This is similar to the close function, but it allows us to
cancel the dialog.

http://angular-ui.github.io/bootstrap/#/modal
http://angular-ui.github.io/bootstrap/#/modal

More AngularJS Goodness for 7 Minute Workout

[122]

• result: As detailed previously, this is a promise that gets resolved when we
close the dialog. If the dialog is closed using the close(data) method, the
value is resolved to the data value. If dismiss(reason) is called, the promise
is rejected with the reason value. Remember, these callbacks are available on
the then method of the promise object and look something like this:

result.then(function(result){…}, function(reason){…});

If we had resumed the workout using then instead of finally , the code
would have looked like this:
.result.then(function (result) {
 $scope.resumeWorkout(); // on success
}, function (reason) {
 $scope.resumeWorkout(); // on failure
});

Since finally gets called irrespective of whether the promise is resolved or
rejected, we save some code duplication.

We have to use the object indexer syntax (result['finally']) to
invoke finally as finally is a keyword in JavaScript.

• opened: This is also a promise that is resolved when the modal dialog is
opened and the dialog template has been downloaded and rendered. This
promise can be used to perform some activity once the dialog is fully loaded.

The return value of $modal.open comes in handy when we desire to control the
modal dialog from outside the dialog itself. For example, we can call dialog.
close() to forcefully close the dialog popup from WorkoutVideosController.

The implementation of VideoPlayerController is simple:

var VideoPlayerController = function ($scope, $modalInstance, video) {
 $scope.video = video;
 $scope.ok = function () {
 $modalInstance.close();
 };
};

We inject three dependencies: the standard $scope, $modalInstance, and video.

The $modalInstance service is used to control the opened instance of the dialog as
we can see in the $scope.ok function. This is the same object that is returned when
the $modal.open method is called. The method and properties for $modalInstance

Chapter 3

[123]

have already been detailed earlier in the section. We just use the close method to
close the dialog.

The video object is the YouTube link that we have injected using the video property of
the resolve object while calling $modal.open. We assign the video link received to the
modal scope and then the view template (youtube-modal) binds to this video link:

<iframe width="100%" height="480" src="{{video}}" frameborder="0"
 allowfullscreen></iframe>

Before we forget, since we have defined the VideoPlayController as a normal
function, we need to make sure it is minification-safe. Hence, we add a $inject
property on the VideoPlayController object with the required dependencies:

VideoPlayerController["$inject"] = ['$scope', '$modalInstance',
 'video'];

Remember we covered the $inject annotation syntaxes in Chapter 2, Building Our
First App – 7 Minute Workout.

Let's try out our implementation. Load the workout page and click on the video
image. The video should load into a modal popup:

The complete code so far is available in chapter3\checkpoint4. I will
again encourage you to look at this code if you are having issues with
your own implementation.
GitHub Branch: checkpoint3.4 (folder – trainer)

More AngularJS Goodness for 7 Minute Workout

[124]

The app is definitely looking better now. Next, let's add some razzmatazz to our app
by adding a pinch of animation to it!

Animations with AngularJS
HTML animations can either be done using css, or by using some JavaScript
library such as jQuery. Given that CSS3 has inherited support for animation, using
CSS is a preferred way of implementing animation in our apps. With the use of
CSS3 transitions and animation constructs, we can achieve some impressive
animation effects.

In AngularJS, a set of directives has been built in such a way that adding animation
to these directives is easy. Directives such as ng-repeat, ng-include, ng-view,
ng-if, ng-switch, ng-class, and ng-show/ng-hide have build-in support
for animation.

What does it mean when we say the directive supports animation?

Well, from the CSS perspective, it implies that the previous directive dynamically
adds and removes classes to the HTML element on which they are defined at specific
times during directive execution. How this helps in CSS animation will be clear
when we discuss CSS animation in our next section.

From a script-based animation perspective, we can use the module animate function
to animate the previous directives using libraries such as jQuery.

Let's look at both CSS and script-based animation and then understand what
Angular has to offer.

AngularJS CSS animation
CSS animation is all about animating from one style configuration to another using
some animation effect. The animation effect can be achieved by using any of the
following two mechanisms:

• Transition: This is where we define a start CSS state, the end CSS state, and
the transition effect (animation) to use. The effect is defined using the style
property transition. The following CSS style is an example:
.my-class {
 -webkit-transition:0.5s linear all;
 transition:0.5s linear all;
 background:black;
}

Chapter 3

[125]

.my-class:hover {
 background:blue;
}

When the preceding styles are applied to an HTML element, it changes
the background color of the element from black to blue on hover with a
transition effect defined by the transition property.
Such animations are not just limited to pseudo selector such as hover. Let's
add this style:
.my-class.animate {
 background:blue;
}

When this style is added, a similar effect as demonstrated previously can
be achieved by dynamically adding the animate class to an HTML element
which already has my-class applied.

• Animation: This is where we define the start CSS state, the keyframe
configuration that defines the time duration of the animation, and other
details about how the animation should progress. For example, these CSS
styles have the same effect as a CSS transition:

.my-class {
 background:black;
}
.my-class:hover {
 background:blue;
 animation: color 1s linear;
 -webkit-animation: color 1s linear;
}
@keyframes color {
 from {
 background: black;
 }
 to {
 background: blue;
 }
}

The basic difference between transition and animation is that we do not need two CSS
states defined in the case of animation. In the first example, transition happens when
the CSS on the element changes from .my-class to .my-class:hover, whereas in the
second example, animation starts when the CSS state is .my-class:hover, so there is
no end CSS concept with animation.

More AngularJS Goodness for 7 Minute Workout

[126]

The animation property on .my-class:hover allows us to configure the timing
and duration of the animation but not the actual appearance. The appearance is
controlled by @keyframes. In the preceding code, color is the name of the animation
and @keyframes color defines the appearance.

We will not be covering CSS-based animation in detail here. There are
many good articles and blog posts that cover these topics in depth.
To start with, we can refer to MDN documentation for transition
(https://developer.mozilla.org/en-US/docs/Web/Guide/
CSS/Using_CSS_transitions) and for animation (https://
developer.mozilla.org/en-US/docs/Web/Guide/CSS/Using_
CSS_animations).

To facilitate animations, AngularJS directives add some specific classes to the
HTML element.

Directives that add, remove, and move DOM elements, including ng-repeat,
ng-include, ng-view, ng-if, and ng-switch, add one of the three sets of classes
during different times:

• ng-enter and ng-enter-active: These are added when directive adds
HTML elements to the DOM.

• ng-leave and ng-leave-active: These are added before an HTML element
is removed from the DOM.

• ng-move and ng-move-active: These are added when an element is moved
in the DOM. This is applicable to the ng-repeat directive only.

The ng-<event> directive signifies the start and ng-<event>-active signifies
the end of CSS states. We can use this ng-<event>\ng-<event>-active pair for
transition-based animation and ng-<event> only for keyframe-based animation.

Directives such as ng-class, ng-show, and ng-hide work a little differently. The
starting and ending class names are a bit different. The following table details the
different class names that get applied for these directives:

Event Start CSS End CSS Directive
Hiding an element .ng-hide-add ng-hide-add

-active
ng-show, ng-hide

Showing an
element

.ng-hide-
remove

ng-hide-add
-remove-active

ng-show, ng-hide

https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Using_CSS_transitions
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Using_CSS_transitions
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Using_CSS_animations

Chapter 3

[127]

Event Start CSS End CSS Directive
Adding a class to
an element

<class>-add <class>-add
-active

ng-class and class=
"{{expression}}"

Removing a class
from an element

<class>-remove <class>-
remove-active

ng-class and class=
"{{expression}}"

Make note that even interpolation-based class changes (class="{{expression}}")
are included for animation support.

Another important aspect of animation that we should be aware of is that the start
and end classes added are not permanent. These classes are added for the duration
of the animation and removed thereafter. AngularJS respects the transition duration
and removes the classes only after the animation is over.

Let's now look at JavaScript-based animation before we begin implementing
animation for our app.

AngularJS JavaScript animation
The idea here too remains the same but instead of using CSS-based animation,
we use JavaScript to do animation. This is the CSS:

.my-class {
 background:black;
}
.my-class:hover {
 background:blue;
}

We can do something that resembles JavaScript-based animation when we use
jQuery (it requires a plugin such as http://www.bitstorm.org/jquery/
color-animation/):

$(".my-class").hover(function()
 {$(this).animate({backgroundColor:blue},1000,"linear");

To integrate script-based animation with Angular, the framework provides the
Module API method animation:

animation(name, animationFactory);

The first argument is the name of the animation and the second parameter,
animationFactory, is an object with the callback function that gets called when
Angular adds or removes classes (such as ng-enter and ng-leave) as explained in
the CSS section earlier in the chapter.

http://www.bitstorm.org/jquery/ color-animation/
http://www.bitstorm.org/jquery/ color-animation/

More AngularJS Goodness for 7 Minute Workout

[128]

It works something like this. Given here is an AngularJS construct that supports
animation such as ng-repeat:

<div ng-repeat="item in items" class='repeat-animation'>

We can enable animation by using the Module API animation method:

myApp.animation('.repeat-animation', function() {
 return {
 enter : function(element, done) { //ng-enter or element added
 //Called when ng-enter is applied
 jQuery(element).css({
 opacity:0
 });
 jQuery(element).animate({
 opacity:1
 }, done);
 }
 }
});

Here, we animate when ng-enter is applied from the opacity value from 0 to 1.
This happens when an element is added to the ng-repeat directive. Also, Angular
uses the class name of the HTML element to match and run the animation. In the
preceding example, any HTML element with the .repeat-animation class will
trigger the previous animation when it is created.

For the enter function, the element parameter contains the element on which
the directive has been applied and done is a function that should be called to tell
Angular that the animation is complete. Always remember to call this done function.
The preceding jQuery animate function takes done as a parameter and calls it when
the animation is complete.

Other than the enter function, we can add callbacks for leave,
move, beforeAddClass, addClass, beforeRemoveClass, and
removeClass. Check the AngularJS documentation on the ngAnimate
module at https://code.angularjs.org/1.2.15/docs/api/
ngAnimate for more details. Also, a more comprehensive treatment
for AngularJS animation is available on the blog post at http://www.
yearofmoo.com/2013/08/remastered-animation-in
-angularjs-1-2.html.

Armed with an understanding of animation now, let's get back to our app and add
some animation to it.

https://code.angularjs.org/1.2.15/docs/api/ngAnimate
https://code.angularjs.org/1.2.15/docs/api/ngAnimate
http://www.yearofmoo.com/2013/08/remastered-animation-in -angularjs-1-2.html
http://www.yearofmoo.com/2013/08/remastered-animation-in -angularjs-1-2.html
http://www.yearofmoo.com/2013/08/remastered-animation-in -angularjs-1-2.html

Chapter 3

[129]

Adding animation to 7 Minute Workout
Time to add some animation support for our app! The AngularJS ngAnimate module
contains the support for Angular animation. Since it is not a core module, we need to
inject this module and include its script.

Add this reference to the angular animate script in index.html:

<script src="http://ajax.googleapis.com/ajax/libs/angularjs/1.3.3/
 angular-animate.js"></script>

Add module dependency for the ngAnimate module in app.js:

angular.module('app', ['ngRoute', 'ngSanitize', '7minWorkout',
 'mediaPlayer', 'ui.bootstrap', 'ngAnimate']).

We are all set to go.

The first animation we are going to enable is the ng-view transition, sliding in from
the right. Adding this animation is all about adding the appropriate CSS in our app.
css file. Open it and add:

div[ng-view] {
 position: absolute;
 width: 100%;
 height: 100%;
}
div[ng-view].ng-enter,
div[ng-view].ng-leave {
 -webkit-transition: all 1s ease;
 -moz-transition: all 1s ease;
 -o-transition: all 1s ease;
 transition: all 1s ease;
}
div[ng-view].ng-enter {
 left: 100%; /*initial css for view transition in*/
}
div[ng-view].ng-leave {
 left: 0; /*initial css for view transition out*/
}
div[ng-view].ng-enter-active {
 left: 0; /*final css for view transition in*/
}
div[ng-view].ng-leave-active {
 left: -100%; /*final css for view transition out*/
}

More AngularJS Goodness for 7 Minute Workout

[130]

This basically is transition-based animation. We first define the common styles and
then specific styles for the initial and final CSS states. It is important to realize that
the div[ng-view].ng-enter class is applied for the new view being loaded and
div[ng-view].ng-leave for the view being destroyed.

For the loading view, we transition from 100% to 0% for the left parameter.

For the view that is being removed, we start from left 0% and transition to left -100%

Try out the new changes by loading the start page and navigate to the workout or
finish page. We get a nice right-to-left animation effect!

Let's add a keyframe-based animation for videos as it is using ng-repeat, which
supports animation. This time we are going to use an excellent third-party CSS
library animate.css (http://daneden.github.io/animate.css/) that defines
some common CSS keyframe animations. Execute the following steps:

1. Add the reference to the library in index.html after the bootstrap.min.css
declaration:
 <link href="//cdnjs.cloudflare.com/ajax/
libs/animate.css/3.1.0/animate.min.css" rel="stylesheet" />

2. Update the video-panel.html file and add a custom class video-image to
the ng-repeat element:
<div ng-repeat="video in currentExercise.details.related.videos"
ng-click="playVideo(video)" class="row video-image">

3. Update the app.css file to animate the ng-repeat directive:
.video-image.ng-enter,
.video-image.ng-move {
 -webkit-animation: bounceIn 1s;
 -moz-animation: bounceIn 1s;
 -ms-animation: bounceIn 1s;
 animation: bounceIn 1s;
}
.video-image.ng-leave {
 -webkit-animation: bounceOut 1s;
 -moz-animation: bounceOut 1s;
 -ms-animation: bounceOut 1s;
 animation: bounceOut 1s;
}

The setup here is far simpler as compared to transition-based animation. Most of the
code is around vendor-specific prefixes.

http://daneden.github.io/animate.css/

Chapter 3

[131]

We define animation effect bounceIn for the ng-enter and ng-move states and
bounceOut for the ng-leave state. Much cleaner and simpler!

To verify the implementation, open the workout and wait for the first exercise to
complete to see the bounce-out effect and the next exercise to load for the bounce
-in effect.

The app implementation so far is available in companion code
chapter3\checkpoint5.
GitHub Branch: checkpoint3.5 (folder – trainer)

While using animation, we should not go overboard and add too much of it as it
makes the app look amateurish. We have added enough animation to our app and
now it's time to move to our next topic.

One area that we still have not explored is Angular services. We have used some
Angular services, but we have little understanding of how services work and what it
takes to create a service. The next section is dedicated to this very topic.

Workout history tracking using Angular
services
What if we can track the workout history? When did we last exercise? Did we
complete it? How much time did we spend?

Tracing workout history requires us to track workout progress. Somehow, we need
to track when the workout starts and stops. This tracking data then needs to be
persisted somewhere.

One way to implement this history tracking is to extend our WorkoutController
function with the desired functionality. This approach is less than ideal,
and we have already seen how to make use of another controller (such as
WorkoutAudioController) and delegate all the related features to it.

In this case, historical data tracking does not require a controller, so instead we will
be using a service to track historical data and share it across all app controllers. Before
we start our journey of implementing the workout tracking service, let's learn a bit
more about AngularJS services.

More AngularJS Goodness for 7 Minute Workout

[132]

AngularJS services primer
Services are one of the fundamental constructs available in AngularJS. As described
earlier, services in Angular are reusable (mostly non-UI) components that can be
shared across controllers, directives, filters, and other services. We have already used
a number of inbuilt Angular services such as $interval, $location, and $timeout.

A service in AngularJS is:

• A reusable piece of code that is used across AngularJS constructs: For
example, services such as $location, $interval, $timeout, and $modal
are components that perform a specific type of work and can be injected
anywhere. Services normally do not interact with DOM.

The $modal service is an exception to this rule as it does manipulate
DOM to inject modal dialog related HTML.

• Singleton in nature: The singleton nature of the service means that the
service object injected by the DI framework is the same across all AngularJS
constructs. Once the AngularJS DI framework creates the service for the
first time, it caches the service for future use and never recreates it. For
example, wherever we inject the $location service, we always get the same
$location object.

• Created on demand: The DI framework only creates the service when it is
requested for the first time. This implies that if we create a service and never
inject it in any controller, directive, filter, or service, then the service will
never be instantiated.

• Can be used to share state across the application: Due to the singleton nature
of the service, services are a mechanism to share data across all AngularJS
constructs. For example, if we inject a service into multiple controllers, and
update the service state in one of the controllers, other controllers will get the
updated state as well. This happens because service objects are singleton, and
hence everyone gets the same service reference to play with.

Let's learn how to create a service.

Creating AngularJS services
AngularJS provides five recipes (ways) to create a service. These recipes are named
constant, value, service, factory, and provider. The end result is still a service object
that is consumable across the application. We can create these service objects by
either using the Module API or the $provide service (which itself is a service!).

Chapter 3

[133]

The Module API itself internally uses the $provide service. We will be using the
Module API for our sample code.

Let's try to understand each of the five ways of creating a service. The first ones that
are constant and value are somewhat similar.

Creating services with the constant and value services
Both the constant and value services are used to create values/objects in Angular.
With the Module API, we can use the constant and value functions respectively
to create a constant and value service. For example, here are the syntaxes:

angular.module('app').constant('myObject', {prop1:"val1",
 prop2:"val2"});

or

angular.module('app').value('myObject', {prop1:"val1",
 prop2:"val2"});

The preceding code creates a service with the name myObject. To use this service, we
just need to inject it:

angular.module('app').controller('MyCtrl',['$scope','myObject',
function($scope, myObject) {
 $scope.data=myObject.prop1; //Will assign "val1" to data
});

Angular framework service names by convention are prefixed with the $
sign ($interval, $location) to easily differentiate these from
user-defined services. While creating our own service, we should not
prefix the $ sign to our service names, to avoid confusion.

The one difference between the constant and value service is that the constant service
can be injected at the configuration stage of the app whereas the value service cannot.

In the previous chapter, we talked about the configration and run stage of every
AngularJS module. The configuration stage is used for the initialization of our service
components before they can be used. During the configuration stage, the standard
DI does not work as at this point services and other components are still being
configured before they become injectable. The constant service is something that we
can still inject even during the configuration stage. We can simply inject the myObject
service in the config function:

angular.module('app').config(function(myObject){

More AngularJS Goodness for 7 Minute Workout

[134]

We should use the constant service if we want some data to be available
at the configuration stage of the module initialization too.

Another thing to keep in mind is that the constant and value services do not take any
dependencies so we cannot inject any.

Creating services using a service
These are services created using the module service method and look something
like this:

angular.module('app').service('MyService1',['dep1',function(dep1)
 {
 this.prop1="val1";
 this.prop2="val2";
 this.prop3=dep1.doWork();
 }]);

The previous service is invoked like a constructor function by the framework and
cached for the lifetime of the app. As explained earlier, the service is created on
demand when requested for the first time. To contrast it with plain JavaScript,
creating a service using the service function is equivalent to creating an object using
the constructor function:

new MyService(dep1);

Services created using the service recipe can take dependencies (dep1). The next way
to create a service is to use factory.

Creating services with a factory service
This mechanism of service creation uses a factory function. This function is
responsible for creating the service and returning it. Angular invokes this factory
function and caches the return value of this function as a service object: factory
implementation looks like this:

angular.module('app').factory('MyService2', ['dep1', function (dep1) {
 var service = {
 prop1: "val1",
 prop2: "val2",
 prop3: dep1.doWork()
 };
 return service;
});

Chapter 3

[135]

In the previous code, the factory function creates a service object, configures it,
and then returns the object. The difference between the service and factory function
is that, in the first case, Angular creates the service object treating the service as the
constructor function, whereas the case of the factory service, we create the object
and provide it to the framework to cache.

Remember to return a value from the factory function or the service
will be injected as undefined.

The factory way of creating a service is the most commonly used method as it
provides a little more control over how the service object is constructed.

The last and the most sophisticated recipe of creating a service is provider.

Creating services with a provider service
The provider recipe gives us the maximum control over how a service is created and
configured. All the previous ways of creating a service are basically pre-configured
provider recipes to keep the syntax simple to understand. The provider mechanism
of creating a service is seldom used, as we already have easier and more intuitive
ways to create these sharable services.

In this method, the framework first creates a custom object that we define. This object
should have a property $get (which itself is injectable) that should be the factory
function as mentioned earlier. The return value of the $get function is the service
instance of the desired service. If it all sounds gibberish, this example will help us
understand the provider syntax:

angular.module('app').provider('myService3', function () {
 var prop1;
 this.setIntialProp1Value = function (value) {
 prop1 = value; // some initialization if required
 };
 this.$get = function (dep1) {
 var service = {
 prop1: prop1,
 prop2: dep1.doWork(),
 prop3: function () {}
 };
 return service;
 };
});

More AngularJS Goodness for 7 Minute Workout

[136]

We define this piece of code as a provider service, myService3. Angular will create
an object of this provider and call the $get factory function on it to create the actual
service object. Note that we are injecting dependencies in the $get method, and not
in the provider service declaration.

The final outcome is the same as myService1 and myService2 except that the
provider allows us to configure the service creation at the configuration stage. The
following code shows how we can configure the initial value of the prop1 property
of the myService3 service:

angular.module('app').config(function (myService3Provider) {
 myService3Provider.setIntialProp1Value("providerVal");
});

Here, we call the initial setIntialProp1Value method on the provider, which
affects the value of prop1 (it sets it to providerVal) when the service is actually
created. Also, make a note of the name of the dependency we have passed; it is
myService3Provider and not myService3. Remember this convention or the
configuration dependency injection will not work.

I have created a fiddle to show how each of the constant, value, service,
factory, and provider services are created. You can experiment with these
service constructs here at http://jsfiddle.net/cmyworld/k3jjk/.

When should we use the provider recipe? Well, the provider syntax is useful only if
we need to set up/initialize parts of the service before the service can be consumed.
The $route service is a good example of it. We use the underlying $routeProvider
to configure the routes before they can be used in the app.

With this understanding of AngularJS services, it is time for us to implement
workout history tracking.

Implementing workout history tracking
The first task here is to define the service for tracking data. The service will provide
a mechanism to start tracking when the workout starts and end tracking when the
workout ends.

The WorkoutHistoryTracker service
We start with defining the service. Open the services.js file and add the initial
service declaration as follows:

http://jsfiddle.net/cmyworld/k3jjk/

Chapter 3

[137]

angular.module('7minWorkout')
 .factory('workoutHistoryTracker', ['$rootScope', function
 ($rootScope) {
 var maxHistoryItems = 20; //Track for last 20 exercise
 var workoutHistory = [];
 var currentWorkoutLog = null;
 var service = {};
 return service;
}]);

We use the factory recipe to create our service and the dependency that we inject
is $rootScope. Let's quickly go through some guidelines around using scope in
the service.

Services and scopes
From a scope perspective, services have no association with scopes. Services are
reusable pieces of components which are mostly non-UI centric and hence do not
interact with DOM. Since a scope is always contextually bound to the view, passing
$scope as a dependency to a service neither makes sense, nor is it allowed. Also,
a scope's lifetime is linked to the associated DOM element. When the DOM is
removed, the linked scope is also destroyed whereas services being singleton are
only destroyed when the app is refreshed. Therefore, the only dependency injection
allowed in a service from a scope perspective is $rootScope, which has a lifetime
similar to the service lifetime.

We now understand that injecting current scope ($scope) in a service is not allowed.
Even calling a service method by passing the current $scope value as a parameter is
a bad idea. Calls such as the following in controller should be avoided:

myService.updateUser($scope);

Instead, pass data explicitly, which conveys the intent better.

myService.updateUser({first:$scope.first, last:$scope.last,
 age:$scope.age});

If we pass the current controller scope to the service, there is always a possibility that
the service keeps the reference to this scope. Since services are singleton, this can
lead to memory leaks as a scope does not get disposed of due to its reference inside
the service.

Service implementation continued...
Continuing with the implementation, we will track the last 20 workouts done. The
workoutHistory array will store the workout history. The currentWorkoutLog
array tracks the current workout in progress.

More AngularJS Goodness for 7 Minute Workout

[138]

Add two methods: startTracking and endTracking on the service object,
as follows:

service.startTracking = function () {
 currentWorkoutLog = { startedOn: new Date().toISOString(),
completed: false,
exercisesDone: 0 };
if (workoutHistory.length >= maxHistoryItems) {
 workoutHistory.shift();
 }
 workoutHistory.push(currentWorkoutLog);
};

service.endTracking = function (completed) {
 currentWorkoutLog.completed = completed;
 currentWorkoutLog.endedOn = new Date().toISOString();
 currentWorkoutLog = null;
};

The controller will call these methods to start and stop tracking of the exercise.

In the startTracking function, we start with creating a new workout log with the
current time set. If the workoutHistory array has reached its limits, we delete the
oldest entry before adding the new workout entry to workoutHistory.

The endTracking function marks the workout as completed based on the
input variable. It also sets the end date of the workout and clears the
currentWorkoutLog variable.

Add another service function getHistory that returns the workoutHistory array:

service.getHistory = function () {
 return workoutHistory;
}

Lastly, add an event subscriber:

$rootScope.$on("$routeChangeSuccess", function (e, args) {
 if (currentWorkoutLog) {
 service.endTracking(false); // End the current tracking if in
progress the route changes.
 }
});

Events in Angular are a new concept that we will touch upon later during the
implementation. For now, it will be enough to say that this piece of code is used to
end exercise tracking when the application route changes.

Chapter 3

[139]

Passing a false value to the endTracking function marks the workout as incomplete.

Lastly, include the services.js reference in index.html after the
filters.js reference.

<script src="js/7MinWorkout/services.js"></script>

We are now ready to integrate the service with our WorkoutController function.

Integrating the WorkoutHistoryTracker service with
a controller
Open workout.js and inject the workoutHistoryTracker service dependency into
the controller declaration:

.controller('WorkoutController', ['$scope', '$interval',
 '$location', '$timeout', 'workoutHistoryTracker', function (
 $scope, $interval, $location, $timeout, workoutHistoryTracker) {

The preceding injections are no different from the other services that we have
injected so far.

Now add this line inside the startWorkout function just before the call to
startExercise:

workoutHistoryTracker.startTracking();
$scope.currentExerciseIndex = -1;
startExercise($scope.workoutPlan.exercises[0]);

We simply start workout tracking when the workout starts.

We now need to stop tracking at some point. Find the function
startExerciseTimeTracking and replace $location.path('/finish'); with
workoutComplete();. Then, go ahead and add the workoutComplete method:

var workoutComplete = function () {
workoutHistoryTracker.endTracking(true);
$location.path('/finish');
}

When the workout is complete, the workoutComplete function is invoked and calls
the workoutHistoryTracker.endTracking(); function to end tracking before
navigating to the finish page.

With this, we have now integrated some basic workout tracking in our app. To verify
tracking works as expected, let's add a view that shows the tracking history in a
table/grid.

More AngularJS Goodness for 7 Minute Workout

[140]

Adding the workout history view
We are going to implement the history page as a pop-up dialog. The link to the
dialog will be available on the top nav object of the application, aligned to the right
edge of the browser. Since we are adding the link to the top nav object, it can be
accessed across pages.

Copy the updated index.html file from the companion code in chapter3/
checkpoint6/app. Other than some style fixes, the two major changes to the index.
html file are the addition of a new controller:

<body ng-app="app" ng-controller="RootController">

Add the history link:

<ul class="nav navbar-nav navbar-right">
 <a ng-click="showWorkoutHistory()" title="Workout
 History">History

As the previous declaration suggests, we need to add a new controller
RootController to the app. Since it is declared alongside the ng-app directive,
this controller will act as a parent controller for all the controllers in the app. The
current implementation of RootController opens the modal dialog to show the
workout history.

Copy the root.js file from chapter3\checkpoint6\app\js and place it in the same
folder where the app.js file resides.

RootController implementation is similar to WorkoutVideosController. The only
point of interest in the current RootController implementation is the use of the
workoutHistoryTracker service to load and show workout history:

var WorkoutHistoryController = function ($scope, $modalInstance,
 workoutHistoryTracker) {
 $scope.search = {};
$scope.search.completed = '';
 $scope.history = workoutHistoryTracker.getHistory();
 $scope.ok = function () {
 $modalInstance.close();
 };
};

Remember, we get the same service instance for workoutHistoryTracker as the
one passed in to WorkoutController (because services are singleton), and hence
the getHistory method will return the same data that was created/updated during
workout execution.

Chapter 3

[141]

Add a reference to the root.js file in index.html after the app.js reference (if not
already added):

<script src="js/root.js"></script>

Next we need to add the view. Copy the view HTML from chapter3\checkpoint6\
app\partials\workout-history.html into the partial folder.

We will not delve deeply into workout history view implementation yet. It basically
has a table to show workout history and a radio button filter to filter content based
on whether the exercise was completed or not.

Run the app and we should see the History link in the top navigation bar. If we click
on it, a popup should open that looks something like this:

Since there is no workout data, there is no history. Start the workout and click on the
link again and we will see some data in the grid, as seen in the following screenshot:

More AngularJS Goodness for 7 Minute Workout

[142]

If we now navigate to the start or finish page by changing the URL or wait for
the workout to finish and then check the history, we will see the end time for the
exercise too.

Check code in chapter3/checkpoint6/app if you are having
problems running the app.
GitHub branch: checkpoint3.6 (folder – trainer)

We now have some rudimentary history tracking enabled that logs the start and end
time of a workout. The WorkoutController function starts the tracking when the
workout starts and ends it when the workout ends. Also, if we manually navigate
away from the workout page, then the workoutHistoryTracker service itself
stops tracking the running workout and marks it as incomplete. The service makes
use of the eventing infrastructure to detect whether the route has changed. The
implementation looks like this:

$rootScope.$on("$routeChangeSuccess", function (e, args) {
if (currentWorkoutLog) {
 service.endTracking(false);
}});

To understand the preceding piece of code, we will need to understand the
AngularJS eventing primitives.

AngularJS eventing
Events are implementation of the observer design pattern. They allow us to decouple
publishing and subscribing components. Events are common in every framework
and language. JavaScript too has support for events where we can subscribe to events
raised by DOM elements such as a button click, input focus, and many others. We can
even create custom events in JavaScript using the native Event object.

AngularJS too supports a mechanism to raise and consume events using the scope
object. These events might sound similar to DOM element events but these custom
events have a very specific purpose/meaning within our app. For example, we can
raise events for the start of an exercise, start of a workout, workout completion,
or workout aborted. In fact, a number of Angular services themselves raise events
signifying something relevant has occurred, allowing the subscribers of the event to
react to the change.

Chapter 3

[143]

This eventing infrastructure is completely built over the scope object. The API
consists of three functions:

• $scope.$emit(eventName, args)

• $scope.$broadcast(eventName, args)

• $scope.$on(eventName, listener(e, args))

$scope.$emit and $scope.$broadcast are functions to publish events. The first
argument that these functions take is the name of the event. We are free to use any
string value for the name. It is always advisable to use strings that signify what
happened, such as workoutCompleted. The second argument is used to pass any
custom data to the event handler.

$scope.$on is used to subscribe to events raised either using either $scope.$emit
or $scope.$broadcast. The match between the event publisher and subscriber is
done using the eventName argument. The second argument is the listener that gets
invoked when the event occurs.

The listener function is called by the framework with two arguments, the event
and the arguments passed when the event was raised. Since we have already used
the $on function in our service, let's try to dissect how it works. In this line:

$rootScope.$on("$routeChangeSuccess", function (e, args) {

We define the event handler on $rootScope as we can only inject $rootScope in a
service and since $rootScope too is a scope, subscription works. We subscribe to an
event $routeChangeSuccess. However, who raises this event?

One thing is pretty evident from the event name: that this event is raised when
the app route changes. Also, who is responsible for managing routes, the $route
service? The $route services raises this event when the route change is complete.
The service also raises two other events: $routeChangeError and $routeUpdate.
Refer to the $route documentation for more details about the events.

Since $route is a service, it also has access to $rootScope only, so it calls:

$rootScope.$broadcast('$routeChangeSuccess', next, last);

The next and last parameters are the old and the new route definitions. The
$routeChangeSuccess event signifies successful transition from the last to next
route. The last/next objects are route objects that we added when defining the
route using $routeProvider.

The $route service previously mentioned uses the $broadcast method, but why
$broadcast and why not $emit? The difference lies in the way $broadcast and
$emit propagate events.

More AngularJS Goodness for 7 Minute Workout

[144]

To understand the subtle difference between these methods, let's look at this diagram
which shows a random scope hierarchy that can exist in any AngularJS app and how
events travel:

$rootScope is the overall parent of all scopes. Other scopes come into existence
when a directive asks for a new scope. Directives such as ng-include, ng-view, ng-
controller, and many other directives cause new scopes to be rendered. For the
previous scope hierarchy, this occurs:

• The $emit function sends the event or message up the scope hierarchy,
from the source of the event or scope on which the event is raised to the
parent scope related to the parent DOM element. This mechanism is useful
when a child component wants to interact with its parent component
without creating any dependency. Based on the previous diagram, if we do
a $scope.$emit implemention on scope s4, then scope s2 and $rootScope
can catch the event with $scope.$on, but scope s5, s3, or s1 cannot. For
emitted events, we have the ability to stop propagation of the event.

• $broadcast is just the opposite of $emit. As shown in the image,
$broadcast happens down the scope hierarchy from the parent to all its
child scopes and its child scopes and so on. Unlike $emit, a $broadcast
event cannot be cancelled. If scope s2 does a broadcast, scope s4 and s5 can
catch it but scope s1, s5, and $rootScope cannot.

Chapter 3

[145]

Since $rootScope is the parent of all scopes, any broadcast done from
$rootScope can be received by each and every scope of the application.
A number of services such as $route use $rootScope.$broadcast to
publish event messages. This way any scope can subscribe to the event
message and react to it. The $routeChangeSuccess event in the $route
service is a good example of such an event.

For obvious reasons, $emit from $rootScope does not work for global event
propagation (like $routeChangeSuccess) as $emit propagates the events
up the hierarchy, but, since $rootScope is at the top of the hierarchy, the
propagation stops there itself.

Since $rootScope.$broadcast is received by each and every scope
within the app, too many of these broadcasts on the root scope can have a
detrimental effect on the application's performance. Look at this jsPerf
(http://jsperf.com/rootscope-emit-vs-rootscope
-broadcast) test case to understand the impact.

We can summarize the different $broadcast and $emit functions in two sentences:

• $emit is what goes up
• $broadcast is what propagates down

Eventing is yet another mechanism to share data across controllers, services, and
directives but its primary intent is not data sharing. Events as the name suggests
signify something relevant happened in the app and let other components react to it.

That sums up the eventing infrastructure of AngularJS. Let's turn our focus back to
our app where we plan to utilize our newfound understanding of the eventing.

Enriching history tracking with AngularJS
eventing
The $routeChangeSuccess event implementation in workoutHistoryTracker
makes more sense now. We just want to stop workout tracking as the user has
moved away from the workout page.

The missing pieces on our history tracking interface are two columns, one detailing
the last exercise in progress and the other providing information about the total
number of exercises done.

http://jsperf.com/rootscope-emit-vs-rootscope -broadcast
http://jsperf.com/rootscope-emit-vs-rootscope -broadcast

More AngularJS Goodness for 7 Minute Workout

[146]

This information is available inside WorkoutController when the workout
is in progress and it needs to be shared with the workoutHistoryTracker
service somehow.

One way to do it would be to add another function to the service such as
trackWorkoutUpdate(exercise) and call it whenever the exercise changes,
passing in the exercise information for the new exercise.

Or we can raise an event from WorkoutController whenever the exercise changes,
catch that event on the $rootScope object in the service, and update the tracking
data. The advantage of an event-based approach is that in the future, if we add
new components to our app that require exercise change tracking, no change in the
WorkoutController implementation will be required.

We will be taking the eventing approach here. Open workout.js and inside the
startExercise function, update the if condition to this:

if (exercisePlan.details.name != 'rest') {
 $scope.currentExerciseIndex++;
 $scope.$emit("event:workout:exerciseStarted",
 exercisePlan.details);
}

Here, we emit an event (that moves up) with the name
event:workout:exerciseStarted. It is always a good idea to add some context
around the source of the event in the event name. We pass in the current exercise
data to the event.

In services.js, add the corresponding event handler to the service implementation:

$rootScope.$on("event:workout:exerciseStarted", function (e, args) {
currentWorkoutLog.lastExercise = args.title;
 ++currentWorkoutLog.exercisesDone;
});

The code is self-explanatory as we subscribe to the same event and update workout
history data with the last exercise done and the number of total exercises completed.
The args argument points to the exercisePlan.details object that is passed when
the event is raised with $emit.

One small improvement we can do here is that, rather than using a string value in
an event name, which can lead to typos or copy paste issues, we can get these names
from a constant or value service, something like this:

angular.module('7minWorkout').value("appEvents", {
 workout: { exerciseStarted: "event:workout:exerciseStarted" }
});

Chapter 3

[147]

Add the preceding code to the end of services.js.

Inject this value service in the workoutHistoryTracker service and
WorkoutController and use it in event publishing and subscription:

$scope.$emit(appEvents.workout.exerciseStarted,
 exercisePlan.details); // in WorkoutController

$rootScope.$on(appEvents.workout.exerciseStarted, function (e,
 args) {// in workoutHistoryTracker service

The value service appEvents acts as a single source of reference for all events
published and subscribed throughout the app.

We can now verify our implementation after starting a new workout and checking
the history table. We should see data in the two columns: Last Exercise and
Exercises Done:

It might seem that we are done with workout history tracking but there is still a
minor issue. If we refresh the browser window, the complete workout data is lost.
We can confirm this by refreshing the browser and looking at the history grid; it will
be empty!

Well, the data got lost because we are not persisting it. It is just in memory as a
JavaScript array. What options do we have for persistence?

We can do persistence on a server. This is a viable option but, since we have not
touched on the client-server interaction part in Angular, let's skip this option
for now.

The other option is to use the browser's local storage. All modern browsers have
support for the persisting user data in browser storage.

The advantage of this storage mechanism is that data is persisted even if we close
the browser. The disadvantage is that the store is not shared across the browser; each
browser has its own store. For now, we can live with this limitation and use browser
storage to store our workout history data.

More AngularJS Goodness for 7 Minute Workout

[148]

Persisting workout history in browser storage
To implement browser storage integration with our service, we will again look for a
community solution and the one that we plan to use is AngularJS-local-storage
(https://github.com/grevory/angular-local-storage). This is a simple module
that has a service wrapper over the browser local storage API.

I hope now we are quite used to adding module dependencies and dependency
injection at service, filter, and controller level.

Go ahead and add the LocalStorageModule dependency to our app module in
app.js.

Then open services.js and inject the dependency localStorageService into
workoutHistoryTracker.

Add two declarations at the top of our workoutHistoryTracker service with
other declarations:

var maxHistoryItems = 20
, storageKey = "workouthistory"
, workoutHistory = localStorageService.get(storageKey) || []

Add this line at the end of the startTracking function:

localStorageService.add(storageKey, workoutHistory);

Add this line at the end of the event handler for event appEvents.workout.
exerciseStarted:

localStorageService.add(storageKey, workoutHistory);

Finally, add this line to the end of the endTracking function:

localStorageService.add(storageKey, workoutHistory);

Again pretty simple stuff! When the service is instantiated, we check if there is some
workout history available by calling the get method of localStorageService
passing in the key to our entry. If there is no historical data, we just assign an empty
array to workoutHistory.

Thereafter, in each relevant function implementation, we update the historical data
by calling an add function on localStorageService. Since the local storage does
not have the concept of updates, adding the same data with the same key again
overwrites the original data, which is similar to an update. Also, note that we update
the complete array, not a specific row in the local storage.

https://github.com/grevory/angular-local-storage

Chapter 3

[149]

The historical data is now being persisted and we can verify this by generating some
workout history and refreshing the page. If our implementation was spot on, the
data will not be lost.

The current state of the app is available in the checkpoint7 folder under
chapter3. Check it out if you are having issues with running the app.
GitHub Branch: checkpoint3.7 (folder – trainer)

The workout history view (workout-history.html) has some new constructs that
we have not touched so far. With the history tracking implementation out of the way,
it is a good time to look at these new view constructs.

Filtering workout history.
The first in line are the radio inputs that we have added to filter exercises.

The snippet for showing radio button filters looks like this:

<label><input type="radio" name="searchFilter"
 ng-model="search.completed" value="">All</label>
<label><input type="radio" name="searchFilter"
 ng-model="search.completed" value="true">Completed</label>
<label><input type="radio" name="searchFilter"
 ng-model="search.completed" value="false">Incomplete</label>

We use the ng-model directive to bind the input value attribute to the model
property search.completed. This implies that, if we select a radio button with text
All, the model property search.completed will be empty. The search.completed
property will be true for the second radio and false for the third radio selection.

Radio input also supports additional custom directives such as ng-value
and ng-change. We will be covering these directives in more detail in an
upcoming chapter where we learn about Angular support for the forms
and input elements.

The idea here is to use the radio buttons to set the $scope.search.completed
property. Now to understand how we use the search.completed property, we
need to dissect the new avatar of ng-repeat.

More AngularJS Goodness for 7 Minute Workout

[150]

Filtering and ordering using ng-repeat
The ng-repeat expression that we have used here seems to be more complex than
the one that was used for showing video list. It looks like this:

<tr ng-repeat="historyItem in history | filter:search | orderBy:'-
 startedOn'">

As we know, the symbol | is used to represent a filter in an expression. In the
preceding ng-repeat expression, we have added two filters one after another and
this is how we interpret the complete filter expression.

Take the history array and apply the filter filter with a search expression that
contains data to search for. On the resultant (filtered) array, again apply a filter to
reorder the array elements based on the model property startedOn.

Remember, ng-repeat supports objects for iteration too, but the filters
filter and orderBy only work on arrays.

From the previous expression, we can see how the result of one filter acts as an input
for another filter and what we finally get is a filtered data set that has passed through
both the filters. The filter search filter alters the count of the source array whereas
the orderBy filter reorders the elements.

Let's explore these filters in more detail and understand how to use them

The filter object of AngularJS filters
We touched upon filter in the last chapter. The filter object is a very versatile
and powerful filter and provides a number of options to search and filter an array.
The general filter syntax is:

{{ filter_expression | filter : expression : comparator}}

The filter object can take three types of expressions (the first filter parameter
expression), as follows:

• Strings: The array searches for this string value. If it is an array of objects,
each property in the array that is of the string type is searched. If we prefix it
with ! (!string) then the condition is reversed.

• Objects: This syntax is used for more advanced searches. In the preceding
ng-repeat, we use object search syntax. The value of our search object is
{completed:''}, {completed:true}, or {completed:false} based on the
radio options selected. When we apply this search expression to the filter, it

Chapter 3

[151]

tries to find all the objects in the history where historyItem.completed =
search.completed.
Using the object notation, we restrict our search to specific properties on the
target array elements, unlike the string expression that only cares about the
property value and not the name of the property.
We can search based on multiple properties too. For example, a search
expression such as {completed:true, lastExercise:"Plank"}, will
filter all exercises that were completed where the last exercise was Plank.
Remember that in a multi-condition filter, every condition must be satisfied
for an item to be filtered.

• function(value): We can pass a predicate function, which is called for each
array element and the element is passed in as value parameter. If the function
returns true, it's a match else a mismatch.

The comparator parameter defined in the previous filter syntax is used to control
how comparison is done for a search.

• function(actual, expected): The actual value is the original array value
and expected is the filter expression. For example, in our case, we have this:
<tr ng-repeat="historyItem in history | filter:search |
 orderBy:'-startedOn'">

Each historyItem is passed into actual and the search value into
expected. The function should return true for the item to be included in the
filtered results.

• true: A strict match is done using angular.equals(actual, expected).
• false|undefined: This does a case-insensitive match. By default,

comparison is case-insensitive.

The other filter that we have used is an orderBy filter.

The AngularJS orderBy filter
The orderBy filter is used to sort the array elements before they are rendered in the
view. Remember, the order in the original array remains intact. We use the orderBy
filter to sort the workout history array using the startedOn property.

The general syntax of order by looks like this:

{{ orderBy_expression | orderBy : expression : reverse}}

The expression parameter can take these:

More AngularJS Goodness for 7 Minute Workout

[152]

• Strings: This is used to sort an array based on its element property name. We
can prefix + or - to the string expression, which affects the sort order. We use
the expression -startedOn to sort the workout history array in decreasing
order of the startedOn date.
Since we are using a constant expression for search, we have added quotes (')
around –startedOn. If we don't quote the expression and use:
<tr ng-repeat="historyItem in history | filter:search | orderBy:-
startedOn">

AngularJS would look for a property name startedOn on the scope object.

• function(element): This sorts the return value of the function.
Such expression can be used to perform custom sorting. The element
parameter is the item within the original array. To understand this, consider
an example array:
$scope.students = [
 {name: "Alex", subject1: '60', subject2: "80"},
 {name: "Tim", subject1: '75', subject2: "30"},
 {name: "Jim", subject1: '50', subject2: "90"}];

If we want to sort this array based on the total score of a student, we will use
a function:
$scope.total = function(student){
 return student.subject1 + student.subject2;

}

Then, use it in the filter:

ng-repeat="student in students | orderBy:total"

• Arrays: This can be an array of string or functions. This is equivalent to
n-level sorting. For example, if the orderBy expression is ["startedOn",
"exercisesDone"], the sorting is first done on the startedOn property. If
two values match the next level, sorting is done on exerciseDone. Here too,
we can again prefix - or + to affect the sort order.

Rendering a list of items with support for sorting and filtering is a very common
requirement across all business apps. These are feature-rich filters that are flexible
enough to suit most sorting and filtering needs and are extensively used across
Angular apps.

There is another interesting interpolation that has been used inside the
ng-repeat directive:

<td>{{$index+1}}</td>

Chapter 3

[153]

Special ng-repeat properties
The ng-repeat directive adds some special properties on the scope object of current
iteration. Remember, ng-repeat creates a new scope on each iteration! These are
as follows:

• $index: This has the current iteration index (zero based)
• $first: This is true if it is the first iteration
• $middle: This is true if it is neither the first nor last iteration
• $last: This is true if it is the last iteration
• $even: This is true for even iterations
• $odd: This is true for odd iterations

These special properties can come in handy in some scenarios. For example, we used
the $index property to show the serial number in the first column of the history grid.

Another example could be this:

ng-class="{'even-class':$even, 'odd-class':$odd}"

This expression applies even-class to the HTML element for even rows and odd
-class for odd rows.

With this, we have reached the end of another chapter. We have added a number of
small and large enhancements to the app and learned a lot. It's time now to wrap up
the chapter.

Summary
Bit by bit, piece by piece, we are adding a number of enhancements to the 7 Minute
Workout app that are imperative for any professional app. There is still scope for new
features and improvements but the core app works just fine and can be used without
any major hiccups.

We started our journey by fixing the exercise step content formatting issue, where
we learned about how to use ng-bind-html to bind HTML data and the role $sce
service plays when it comes to keeping our HTML safe.

We then added audio support in our app. In the process, we learned how to extend
the app's functionality without altering the existing controller; instead, we created a
new MVC subcomponent.

More AngularJS Goodness for 7 Minute Workout

[154]

While adding audio support, we also learned about the change tracking infrastructure
of AngularJS and got introduced to concepts such as dirty checking and digest cycles.

Pausing and resuming exercises was another useful feature that we added. We
learned about the keyboard and mouse-based directives that Angular provides,
including ng-mouse*, ng-key*, ng-click, and some others.

Video panel loading had some lags that led to lags in the overall application. We
fixed the video panel lag and added modal popups for video viewing. We again
refactored our video player implementation by introducing another controller in
the implementation. This resulted in the creation of another MVC sub component.

Next, we explored animation support in AngularJS and added some animation
effects in our workout app. We explored all types of animation models, including
transition effects, keyframe animation, and JavaScript-based animation.

Lastly, we implemented workout history tracking. This involved us in writing an
Angular service that tracked historical data. This complete section was dedicated
to understanding one of the fundamental building blocks for Angular, services. We
learned about various mechanisms to create services, including constant, value,
service, factory, and provider.

During implementation of the history tracking view, we also discovered a great deal
about the ng-repeat construct and two related filters: filter and orderBy.

What next? We are going to build a new app Personal Trainer. This app will allow us
to build our own custom workouts. Once we have the capability of creating our own
workout, we are going to morph the 7 Minute Workout app into a generic Workout
Runner app that can run workouts that we build using Personal Trainer.

For the next chapter, we will showcase AngularJS form capabilities while we build a
UI that allows us to create, update, and view our own custom workouts/exercises.

Building Personal Trainer
The 7 Minute Workout app has been an excellent opportunity for us to learn about
AngularJS. Working through the app, we have covered a number of AngularJS
constructs. Still, there are areas such as AngularJS form (HTML) support and client-
server communication that remain unexplored. This is partially due to the fact that
7 Minute Workout from a functional standpoint had limited touchpoints with the end
user. Interactions were limited to starting, stopping, and pausing the workout. Also,
the app neither consumes, nor produces any data (except workout history).

In this chapter, we plan to delve deeper into one of the two aforementioned areas,
AngularJS form support. Keeping up with the health and fitness theme (no pun
intended), we plan to build a Personal Trainer app. The new app will be an extension
to 7 Minute Workout, allowing us to build our own customized workout plans that
are not limited to the 7 Minute Workout plans that we already have.

The topics we will cover in this chapter include:

• Defining Personal Trainer requirements: Since we are building a new app in
this chapter, we start with defining the app requirements.

• Defining the Personal Trainer model: Any app design starts with defining
its model. We define the model for Personal Trainer, which is similar to the
7 Minute Workout app built earlier.

• Defining the Personal Trainer layout and navigation: We define the layout,
navigation patterns, and views for the new app. We also set up a navigation
system that is integrated with AngularJS routes and the main view.

• Adding support pages: Before we focus on the form capability and build a
workout builder view, we build some supporting pages/views for workout
and exercise listing.

• Defining the workout builder view: We lay out the workout builder view to
manage workouts.

Building Personal Trainer

[156]

• Building forms: We make extensive use of HTML forms and input elements
to create custom workouts. In the process, we learn more about Angular
forms. The concepts that we cover include:

 ° ng-model and NgModelController: We learn about the directive
ng-model of the primary form object and associated controller
NgModelController.

 ° Data formatting and parsing: We explore the NgModelController
formatter and parser pipeline architecture and implementation. We
also create our own parser/formatter.

 ° Input validation: We learn about the validation capabilities of
AngularJS and the role ng-model and NgModelController play here.

 ° Input and form states: Forms and input controls expose state
information that can be used to provide a better user experience.

 ° Common form scenario: We go through some common form usage
scenarios and how to handle them in AngularJS.

 ° Dynamically generated form input: We look at the ng-form directive
and how to use the directive to manage dynamic generated input.

• Nuances of scope inheritance: Scope inheritance in Angular has some
nuances that are important to understand and work around. We dedicate a
section to learn about them.

Time to get started!

The Personal Trainer app – the problem
scope
The 7 Minute Workout app is good, but what if we could create an app that allows us
to build more such workout routines customized to our fitness level and intensity
requirements? With this flexibility, we can build any type of workout whether it is 7
minutes, 8 minutes, 15 minutes, or any other variations. The opportunities are limitless.

With this premise, let's embark on the journey of building our own Personal Trainer
app that helps us to create and manage training/workout plans according to our
specific needs. Let's start with defining the requirements for the app.

Chapter 4

[157]

The new Personal Trainer app will now encompass the existing
7 Minute Workout app. The component that supports workout
creation will be referred to as "Workout Builder". The 7 Minute
Workout app itself will also be referred to as "Workout Runner".
In the coming chapters, we will fix Workout Runner, allowing it
to run any workout created using Workout Builder.

Personal Trainer requirements
Based on the notion of managing workouts and exercises, these are some of the
requirements that our Personal Trainer app should fulfil including:

• The ability to list all available workouts.
• The ability to create and edit a workout. While creating and editing a

workout, it should have:
 ° The ability to add workout attributes including name, title,

description, and rest duration
 ° The ability to add/remove multiple exercises for workouts
 ° The ability to order exercises in the workout
 ° The ability to save workout data

• The ability to list all available exercises.
• The ability to create and edit an exercise. While creating and editing an

exercise, it should have:

 ° The ability to add exercise attributes such as name, title, description,
and procedure

 ° The ability to add pictures for the exercise
 ° The ability to add related videos for the exercise
 ° The ability to add audio clues for the exercise

All the requirements seem to be self-explanatory; hence, let's start with the design
of the application. As customary, we first need to think about the model that can
support these requirements.

Building Personal Trainer

[158]

The Personal Trainer model
No surprises here! The Personal Trainer model itself was defined when we created the
7 Minute Workout app. The two central concepts of workout and exercise hold good
for Personal Trainer too.

The only problem with the existing workout model is in the way it has been
implemented. Since the model definition is inside WorkoutController (workout.
js), we are in no position to reuse the same model for Personal Trainer.

We can either recreate a similar model for Personal Trainer (which does not feel right),
or we can refactor the existing code in a way that the model classes (constructor
functions) can be shared. Like any sane developer, we will be going with the second
option. Let's understand how we can share the model across the application.

Sharing the workout model
JavaScript is a malleable language. You do not need to define any type upfront to
use it. We don't have to declare our model to use it. We can very well create the
model using the standard object notation ({}) any time we need. Still, we define the
constructor function for our model. Defining an explicit model structure helps us in
clearly communicating what we are working against.

To share these model classes, we plan to do something unconventional. We are going
to expose the model as an AngularJS service using the factory template. Things will
be clear once we do this refactoring.

To start with, download the base version of the new Personal Trainer app from the
companion codebase in chapter4/checkpoint1.

The code is also available on GitHub (https://github.com/
chandermani/angularjsbyexample) for everyone to download.
Checkpoints are implemented as branches in GitHub.
The branch to download is as follows:
GitHub Branch: checkpoint4.1 (folder – trainer)

https://github.com/chandermani/angularjsbyexample
https://github.com/chandermani/angularjsbyexample

Chapter 4

[159]

This code has the complete 7 Minute Workout (Workout Runner) app. We have added
some more content to support the new Personal Trainer app. Some of the relevant
updates are:

• Adding the new WorkoutBuilder module. This module contains
implementations pertaining to Personal Trainer. Check app.js for the module
declaration.

• Updating layout and styles of the app: Check app.css and index.html fixes.
• Adding some blank HTML partials for Personal Trainer in the

workoutbuilder folder under app/partials/.
• Defining some new routes for Personal Trainer. We cover route setup for the

app in the coming section.

Let's get back to defining the model.

The model as a service
In the last chapter, we dedicated a complete section to learning about AngularJS
services, and one thing we learned there was that services are useful for sharing data
across controllers and other AngularJS constructs. We essentially do not have data
but a blueprint that describes the shape of the data. The plan, hence, is to use services
to expose the model structure. Open the model.js file present in the shared folder
under app/js.

The model.js file has been added in the shared folder as the service
is shared across the Workout Builder and Workout Runner apps. In future
too, all shared components will be added to this shared folder.

The new model definition for Exercise looks like this:

angular.module('app').factory('Exercise', function () {
 function Exercise(args) {
 //Existing fields
 }
 return Exercise;
});

Building Personal Trainer

[160]

We define a new factory service Exercise on the app module (the main module of
our app). The service implementation declares the Exercise constructor function
that is the same as the one used in 7 Minute Workout (Workout Runner) and then
returns the function object.

Make note that we do not use this:

return new Exercise({});

Instead, we use this:

return Exercise;

Since services are singleton in nature, if we use the first option we are stuck with a
single instance of the Exercise object. By doing return Exercise, we are actually
returning a constructor function reference. Now we can inject the Exercise service
anywhere and also use new Exercise({}) to create the model object.

The name of the constructor function (here function
Exercise(args)) is irrelevant. What matters is the name of the
service as we create objects with the name of the service. It is better
to assign the same names to the service and the model constructor
function to avoid any confusion.

Look at the other model WorkoutPlan; a similar implementation has been done for
this too.

That's all on the model design front. The next thing we are going to do is define the
structure for the new app.

The Personal Trainer layout
The skeleton structure of Personal Trainer looks like this:

Chapter 4

[161]

This has the following components:

• Top Nav: This contains the app branding title and history link.
• Sub Nav: This has navigation elements that change based on the active view

(the view shown is ng-view).
• Left nav: This contains elements that are dependent upon the active view.
• Content Area: This is the main view. This is where most of the action

happens. We will create/edit exercises and workouts and show a list of
exercises and workouts here.

Look at the source code files, there is a new folder workoutbuilder under
app/partials. It has view files for each element that we have described previously
with some placeholder content. We will be building these views as we go along in
this chapter.

However, firstly we need to link up these views within the app. This requires us to
define the navigation patterns for the app and accordingly define the app routes.

The Personal Trainer navigation with routes
The navigation pattern that we plan to use for the app is the list-detail pattern.
We create list pages for exercises and workouts available in the app. Clicking on
any list item takes us to the detail view for the item where we can perform all CRUD
operations (create/read/update/delete). The following routes adhere to this pattern:

Route Description
#/builder This just redirects to #builder/workouts.
#/builder/workouts This lists all the available workouts. This is the

landing page for Personal Trainer.
#/builder/workouts/new This creates a new workout.
#/builder/workouts/:id This edits an existing workout with the specific ID.
#/builder/exercises This lists all the available exercises.
#/builder/exercises/new This creates a new exercise.
#/builder/exercises/:id This edits an existing exercise with the specific ID.

The route configurations in app.js define these new routes.

We have also tried to integrate top navigation and left navigation elements into the
preceding route definitions that are not supported out-of-the-box. The next section
talks about this integration.

Building Personal Trainer

[162]

Integrating left and top navigation
The basic idea around integrating left and top navigation into the app is to provide
context-aware subviews that change based on the active view. For example, when
we are on a list page as opposed to editing an item, we may want to show different
elements in the navigation. An e-commerce site is a great example of this. Imagine
Amazon's search result page and product detail page. As the context changes from
a list of products to a specific product, the navigation elements that are loaded
also change.

To integrate left and top navigation into Workout Builder, we have extended the
app at a number of locations. To start with, look at the new routes in app.js. Some
of these routes contain custom properties that are not part of the standard route
configuration object created using when (https://code.angularjs.org/1.3.3/
docs/api/ngRoute/provider/$routeProvider):

$routeProvider.when('/builder/workouts', {
templateUrl: 'partials/workoutbuilder/workouts.html',
controller: 'WorkoutListController',
leftNav: 'partials/workoutbuilder/left-nav-main.html',
topNav: 'partials/workoutbuilder/top-nav.html'
});

Open the index.html file and pay attention to the highlighted code:

<div class="navbar navbar-default navbar-fixed-top top-navbar">
 <!--Existing html-->
 <div id="top-nav-container" class="second-top-nav">
 <div id="top-nav" ng-include="currentRoute.topNav"></div>
 </div>
</div>
<div class="container-fluid">
 <div id="content-container" class="row">
 <div class="col-sm-2 left-nav-bar"
 ng-if="currentRoute.leftNav">
 <div id="left-nav" ng-include="currentRoute.leftNav"></div>
 </div>
 <div class="col-sm-10 col-sm-offset-2">
 <div id="page-content" ng-view></div>
 </div>
</div>
</div>

The index.html file has been updated and now defines three areas, one each for top
and left navigation, and one for the main view.

https://code.angularjs.org/1.3.3/docs/api/ngRoute/provider/$routeProvider
https://code.angularjs.org/1.3.3/docs/api/ngRoute/provider/$routeProvider

Chapter 4

[163]

Looking back at route configuration, the templateUrl property in the route
definition references the view template that is loaded in the ng-view directive of the
div element. We try to simulate something similar to what Angular does for our left
and top navigation.

The value of the topNav property is used to load the top navigation view in the top-
nav div element ("id = top-nav") using the ng-include directive. We do the
same for left navigation too. The ng-if directive in the left-nav section is used to
hide left navigation if the current route configuration does not define the leftNav
property. We will shortly see how to set up the currentRoute property used in the
ng-include expression mentioned previously.

With this configuration in place, we can associate different left and top navigation
views with different pages. In the preceding route configuration for the workout list,
the left navigation comes from left-nav-main.html and top navigation from top-
nav.html. Look at the other route configuration too, to learn what other navigation
templates we have configured.

The last part of this integration is setting up the currentRoute property and
binding it to ng-include. Angular sets up the ng-view template using the route
configuration templateUrl property, but it does not know or care about the topNav
and leftNav properties that we have added. We need to write some custom code
that binds the navigation URLs with the respective ng-includes directives.

To do this linkup, open root.js and add these event handler lines to
RootController:

$scope.$on('$routeChangeSuccess', function (e, current, previous) {
 $scope.currentRoute = current;
});

We subscribe to the $routeChangeSuccess event raised by the $route service. As
the name suggests, the event is raised when the route change is complete or the main
view is loaded. The current and previous parameters are the route configuration
objects for the loaded and the previous view respectively. These are the same objects
that we configured inside the $routeProvider.then function. Once we assign
the current object to currentRoute, it is just a matter of referencing the route
properties in ng-include (currentRoute.topNav or currentRoute.leftNav) and
the correct template for left and top navigation are loaded. Look at the highlighted
code of the index.html file outlined previously.

The reason this event handler is in RootController is because RootController is
defined outside the ng-view directive and encompasses nearly the complete index
page. Hence, it is a good place to plug common functionality used across child views.

Building Personal Trainer

[164]

Go ahead and load the workout builder page #/builder. We will be redirected to
the workouts page under #/builder. This page lists all the available workouts.

The redirect to the workouts page happens due to this route definition:

$routeProvider.when('/builder',{redirectTo:'/builder/workouts'});

The workout list page is currently empty but the left and top navigation links work.
Click on the New Workout or New Exercise link on top nav and the app loads the
create workout/exercise pages. The left navigation associated with the list pages
(left-nav-main.html) has two links: Workouts and Exercises, to switch between
the workout and exercise list.

With a little customization, we have been able to create a decent navigation system
that reacts to the main view change and loads the correct views in left and top
navigation. Along the same lines, we can always add footer and multiple subviews
to our app if desired.

For more complex needs, there is a compelling offering from the
community called ui-router (http://angular-ui.github.io/ui-
router/site). It supports complex routing scenarios and nested views.
With ui-router, we are not limited to a single ng-view.

The skeleton layout, views, and navigation are now in place and it's time to add
some meat to the implementation. The exercise and workout list is something that is
easy to implement, so let's take that first.

Since one of our main focus points in this chapter is to explore the HTML
form capabilities of AngularJS, we plan to fast-forward through material
that we already have covered and know well.

Implementing the workout and
exercise list
Even before we start implementing the workout and exercise list pages, we need a
data store for exercise and workout data. The current plan is to have an in-memory
data store and expose it using an Angular service. In the coming chapter, where we
talk about server interaction, we will move this data to a server store for long-term
persistence. For now, the in-memory store will suffice. Let's add the store
implementation.

http://angular-ui.github.io/ui-router/site
http://angular-ui.github.io/ui-router/site

Chapter 4

[165]

WorkoutService as a workout and exercise
repository
The plan here is to create a WorkoutService instance that is responsible for exposing
the exercise and workout data across the two applications. The main responsibilities
of the service include:

• Exercise-related CRUD operations: Get all exercises, get a specific exercise
based on its name, create an exercise, update an exercise, and delete it

• Workout-related CRUD operations: These are similar to the exercise-related
operations, but targeted toward the workout entity

Open the companion codebases, copy the services.js and directives.js files
from the shared folder under chapter4/checkpoint2/app/js, and add them to the
shared folder locally. Add references to these files to the index.html script reference
section too.

The directives.js file contains a directive to show confirmed
messages when trying to delete a workout. We will be using it in the
workout builder view.

There is nothing new here that we have not seen. The basic outline of the service
looks like this:

angular.module('app')
 .factory("WorkoutService", ['WorkoutPlan', 'Exercise',
 function (WorkoutPlan, Exercise) {
 var service = {};
 var workouts = [];
 var exercises = [];
 service.getExercises = function () {//implementation}
 service.getWorkouts = function (){//implementation}
 //Some initialization code to load existing data.
 return service;
 }]);

We create the WorkoutService object on the main module app and inject the
model services: WorkoutPlan and Exercise. The two methods: getExercises
and getWorkouts, as the names suggest, return the list of exercises and workouts
respectively. Since we plan to use the in-memory store to store workout and exercise
data, the exercises and workouts arrays store this data. As we go along, we will
be adding more functions to the service.

Time to add the controller and view implementation for the workout and exercise list!

Building Personal Trainer

[166]

Exercise and workout list controllers
Copy the exercise.js and workout.js files from the workoutbuilder folder under
chapter4/checkpoint2/app/js/. Also, go ahead and update index.html with the
references to these two files, at the end of the script declaration area. Again some
standard stuff here! Here is the description of the files:

• workout.js: This defines the WorkoutListController controller that
loads workout data using WorkoutService. The $scope.goto function
implements navigation to the workout detail page. This navigation happens
when we double-click on an item in the workout list. The selected workout
name is passed as part of the route/URL to the workout detail page.

• exercises.js: This has two controllers defined that are:
ExercisesNavController and ExerciseListController.
ExerciseListController is used by the exercise list view.
ExerciseNavController is there to support the left-nav-exercises.html
view, and just loads the exercise data. If we look at the route definition, this
view is loaded in the left navigation when we create/edit a workout.

Lastly, we need to implement the list views that have so far been empty!

Exercise and workout list views
Copy the workouts.html and localhost exercises.html views from the
workoutbuilder folder under chapter4/checkpoint2/app/partials.

Both the views use ng-repeat to list out the exercises and workouts. The ng-
dblclick directive is used to navigate to the respective detail page by double-
clicking on the list item.

Go ahead and refresh the builder page (#/builder); one workout is listed, the 7
Minute Workout. Click on the Exercises link on the left navigation to load the 12
exercises that we have already configured in WorkoutService.

The code implementation so far is available in the checkpoint2
folder under chapter4 for us to validate against.
GitHub branch: checkpoint4.2 (folder – trainer)

The easy stuff is out of the way. Time to add the ability to load, save, and update
exercise/workout data!

Chapter 4

[167]

Building a workout
The core functionality Personal Trainer provides is around workout and exercise
building. Everything is there to support these two functions. In this section, we focus
on building and editing workouts using AngularJS.

The WorkoutPlan model has already been defined, so we are aware of the elements
that constitute a workout. The workout builder page facilitates user input and lets us
build/persist workout data.

Once complete, the workout builder page will look like this:

The page has a left navigation that lists out all the exercises that can be added to
the workout. Clicking on the arrow icon on the right adds the exercise to the end of
the workout.

Building Personal Trainer

[168]

The center area is designated for workout building. It consists of exercise tiles laid
out in order from top to bottom and a form that allows the user to provide other
details about the workout such as name, title, description, and rest duration.

This page operates in two modes:

• Create/New: This mode is used for creating a new workout. The URL is #/
builder/workouts/new.

• Edit: This mode is used for editing the existing workout. The URL is #/
builder/workouts/:id, where :id maps to the name of the workout.

With this understanding of the page elements and layout, it's time to build each of
these elements. We will start with left nav (navigation).

Building left nav
Left nav for the Workout Builder app shows the list of exercises that the user
can add to the workout by clicking on the arrow next to the name of the exercise.
Copy the left nav implementation from left-nav-exercises.html located in the
companion codebase folder workoutbuilder under chapter4\checkpoint3\app\
partials\ locally. A simple view looks like this:

<div id="left-nav-exercises" ng-controller="ExercisesNavController">
 <h4>Exercises</h4>
 <div ng-repeat="exercise in exercises|orderBy:'title'"
 class="row">
 <button class="btn btn-info col-sm-12" ng-click
 ="addExercise(exercise)">{{exercise.title}}<span class
 ="glyphicon glyphicon-chevron-right"></button>
 </div>
</div>

The view implementation contains ng-repeat used to list out all the exercises and
the ng-controller directive pointing to ExercisesNavController. The ng-click
directive refers to the function (addExercise) that adds the clicked exercise to
the workout.

We have already added ExercisesNavController to exercise.js earlier in this
chapter. This controller loads all the available exercises used to bind the ng-repeat
directive. The missing piece is the implementation of the addExercise(exercise)
function.

Chapter 4

[169]

Implementing the add exercise functionality from left nav is a bit tricky. The views
are different; hence, the scope of left nav and the scope of the main view (loaded as
part of the route in ng-view) is different. There is not even a parent-child hierarchy
to share data.

We always want to keep the UI section as decoupled as possible, hence the option
we have here is to either use AngularJS events ($broadcast or $emit), or create a
service to share data. We covered both techniques in the previous chapter while
working on 7 Minute Workout.

For our current implementation, we will go the service way and introduce a new
service into the picture that is WorkoutBuilderService. The reason for going the
service way will be clear when we work on the actual workout, save/update logic,
and implement the relevant controllers.

The ultimate aim of the WorkoutBuilderService service is to co-ordinate between the
WorkoutService (that retrieves and persists the workout) and the controllers (such as
ExercisesNavController and others we will add later), while the workout is being
built, hence reducing the amount of code in the controller to the bare minimum.

Adding the WorkoutBuilderService service
WorkoutBuilderService tracks the state of the workout being worked on. It:

• Tracks the current workout
• Creates a new workout
• Loads the existing workout
• Saves the workout

WorkoutBuilderService has a dependency on WorkoutService to provide
persistence and querying capabilities.

Copy the services.js file and from the WorkoutBuilder folder under chapter4/
checkpoint3/app/js, add a reference for services.js in the index.html file after
existing script references.

Let's look at some relevant parts of the service.

Building Personal Trainer

[170]

Unlike WorkoutService, WorkoutBuilderService has a dependency on model
services: WorkoutPlan and Exercise. WorkoutBuilderService also needs to
track the workout being built. We use the buildingWorkout property for this. The
tracking starts when we call the startBuilding method on the service:

service.startBuilding = function (name) {
 if (name) { //We are going to edit an existing workout
 buildingWorkout =
 WorkoutService.getWorkout(name);
 newWorkout = false;
 }
 else {
 buildingWorkout = new WorkoutPlan({});
 newWorkout = true;
}
 return buildingWorkout;
};

The basic idea behind this tracking function is to set up a WorkoutPlan object
(buildingWorkout) that will be made available to views that manipulate the
workout details. The startBuilding function takes the workout name as a
parameter. If the name is not provided, it implies we are creating a new workout,
and hence a new WorkoutPlan object is created and assigned; if not, we load the
workout details by calling WorkoutService.getWorkout(name). In any case, the
buildingWorkout property has the workout being worked on.

The newWorkout object signifies whether the workout is new or an existing one. It
is used to differentiate between the save and update case when the save method on
this service is called.

The rest of the methods, that is, removeExercise, addExercise, and
moveExerciseTo are self-explanatory and affect the exercise list that is part of the
workout (buildingWorkout).

WorkoutBuilderService is calling a new function getWorkout on WorkoutService
which we have not added yet. Go ahead and copy the getWorkout implementation
from the services.js file under chapter4/checkpoint3/app/js/shared. We will
not dwell into the new service code as the implementation is quite simple.

Let's get back to left nav and implement the remaining functionality.

Chapter 4

[171]

Adding exercises using exercise nav
To add exercises to the workout we are building, we just need to inject the
dependency of WorkoutBuilderService into the ExercisesNavController
and call the service method addExercise:

$scope.addExercise = function (exercise) {
 WorkoutBuilderService.addExercise(exercise);
}

Internally, WorkoutBuilderService.addExercise updates the buildingWorkout
model data with the new exercise.

The preceding implementation is a classic case of sharing data between independent
MVC components. The shared service exposes the data in a controlled manner to
any view that requests it. While sharing data, it is always a good practice to expose
the state/data using functions instead of directly exposing the data object. We can
see that in our controller and service implementations too. ExerciseNavController
does not update the workout data directly; in fact it does not have direct access to
the workout being built. Instead, it relies upon the service method addExercise to
change the current workout's exercise list.

Since the service is shared, there are pitfalls to be aware of. As services are injectable
through the system, we cannot stop any component from taking dependency on
any service and calling its functions in an inconsistent manner, leading to undesired
results or bugs. For example, the WorkoutBuilderService needs to be initialized by
calling startBuilding before addExercise is called. What happens if a controller
calls addExercise before the initialization takes place?

Next, we implement the workout builder controller (WorkoutDetailController).
As we work on this controller, the integration between the service, the left nav
controller, and workout builder controller will be self-evident.

Implementing WorkoutDetailController
WorkoutDetailController is responsible for managing a workout. This
includes creating, editing, and viewing the workout. Due to the introduction
of WorkoutBuilderService, the overall complexity of this controller has
reduced. Other than the primary responsibility of integrating with the
view, WorkoutDetailController will delegate most of the other work to
WorkoutBuilderService.

Building Personal Trainer

[172]

WorkoutDetailController is associated with two routes/views namely /builder/
workouts/new and /builder/workouts/:id. This handles both creating and editing
workout scenarios. The first job of the controller is to load or create the workout that
it needs to manipulate. We plan to use Angular's routing framework to pass this data
to WorkoutDetailController.

Go ahead and update two routes (app.js) by adding the highlighted content:

$routeProvider.when('/builder/workouts/new', {
 <!—existing route data-->
 controller: 'WorkoutDetailController',
 resolve: {
 selectedWorkout: ['WorkoutBuilderService', function
 (WorkoutBuilderService) {
 return WorkoutBuilderService.startBuilding();
 }],
 }});
$routeProvider.when('/builder/workouts/:id', {;
 <!—existing route data-->
 controller: 'WorkoutDetailController',
 resolve: {
 selectedWorkout: ['WorkoutBuilderService', '$route',
 function (WorkoutBuilderService, $route) {
 return WorkoutBuilderService.startBuilding(
 $route.current.params.id);
 }],
 }});

The updated route definition uses a new route configuration property resolve.
Remember we have already used a similar property resolve in the previous chapter
when we worked with the $modal dialog service and passed the video URL to the
modal dialog to play:

resolve: {
 video: function () {
 return '//www.youtube.com/embed/' + videoId;}},

Here too, resolve behaves in a similar manner.

Let's try to learn a bit more about the resolve object as it is a handy feature.

Chapter 4

[173]

Route resolving
The resolve property is part of the route configuration object, and provides a
mechanism to pass data and/or services to a specific controller. This is the same
controller that is instantiated as part of a route change (specified in the controller
property of the route configuration object). The resolve object property can be
one of the following:

• A string constant: The string name should be an AngularJS service. This is
not very useful or often used as AngularJS already provides the ability to
inject a service into the controller.

• A function: In this case, the return value of the function can be injected into
the controller with the property name. If the function returns a promise (we
discussed promises in Chapter 2, Building Our First App – 7 Minute Workout),
the route is not resolved and the view is not loaded till the promise itself is
resolved. Once the promise is resolved, the resolved value is injected into the
controller. If the promise fails, the $routeChangeError event is raised on
$rootScope and the route does not change.

We add a property selectedWorkout (that points to a function) to resolve an object
in both routes. This function, when executed during the route change, starts the
workout building process by calling the WorkoutBuilderService.startBuilding
function.

For the new workout route, we do not pass any parameter:

WorkoutBuilderService.startBuilding();

For the edit route (route with :id), we pass the workout name in a route/URL:

WorkoutBuilderService.startBuilding($route.current.params.id);

The return value of selectedWorkout is the workout returned by
WorkoutBuilderService.startBuilding.

The previous $route.current property contains useful details
about the current route. The params object contains values for
all placeholder tokens that are part of the route. Our edit route (/
builder/workouts/:id) has only one token ID, hence params.id
will point to the value of the last fragment of the workout edit route.
These tokens are also available through an Angular service
$routeParams. We will cover $routeParams later in the chapter.
We did not use startBuilding($routeParams.id) here, as this
service is not read during the resolve function call.

Building Personal Trainer

[174]

Note that any function properties of the resolve object can take dependencies
similar to an AngularJS controller. Have a look at the selectedWorkout declaration:

selectedWorkout: ['WorkoutBuilderService', function
 (WorkoutBuilderService) {

We take a dependency on WorkoutBuilderService.

Using the resolve configuration to load the selected workout has another advantage.
We can handle routes that are not found.

Resolving routes not found!
With dynamically generated routes, there is always a chance of a route being invalid.
For example, the workout edit route, such as builder/workouts/abc or builder/
workouts/xyz, points to workout names (abc and xyz) that don't exist. In such a
scenario, the workout builder page does not make sense.

The resolve configuration can help here. If a workout with a given name is not
found, we can redirect the user back to the workout list page. Let's see how. Open
app.js and add the highlighted code, to edit the workout route:

$routeProvider.when('/builder/workouts/:id', {
 //existing code
 resolve: {
 selectedWorkout: ['WorkoutBuilderService', '$route',
'$location', function (WorkoutBuilderService, $route, $location) {
var workout =
WorkoutBuilderService.startBuilding($route.current.params.id);
 if (!workout) {
 $location.path('/builder/workouts');
 }
 return workout;
 }],
 }

We try to load the workout with a specific ID (workout name) and if not found,
redirect the user back to the workout list page. Since we are using the $location
service, we need to add it as a dependency in the selectWorkout function.

There is another use case the resolve object can handle that involves asynchronous
server interaction using promises. We will cover this scenario in the next chapter. For
now, let's continue with the WorkoutDetailController implementation.

Chapter 4

[175]

Implementing WorkoutDetailController continued…
To implement ExerciseDetailController, we inject the current workout being built
using DI. We have already set up the preceding resolve object to get the workout.
Add a new controller declaration to workout.js (located in the WorkoutBuilder
folder under app\js) after the WorkoutListController declaration:

angular.module('WorkoutBuilder').controller('WorkoutDetailControll
er', ['$scope', 'WorkoutBuilderService', 'selectedWorkout', function
($scope, WorkoutBuilderService, selectedWorkout) {
 var init = function () {
 $scope.workout = selectedWorkout; // Resolved workout
 };
 init();
}]);

The $scope.workout object tracks the workout we are working on.

For now, this is enough for the controller implementation. Let's update the skeleton
workout builder view.

Implementing the workout builder view
Go back a few pages and check the layout of workout builder page. The page is
divided into two sections, the section on the left contains the exercises in the workout
and the section on the right contains a form to enter other details about the workout.

Copy content from the workout.html file under chapter4/checkpoint3/app/
partials/workoutbuilder to your local view code. Now run the app, navigate to
#/builder/workouts, and double-click on the 7 Minute Workout tile. This should
load the 7 Minute Workout details with a view similar to the one shown at the start of
the section Building a workout.

In the event of any problem, you can refer to the checkpoint3
code under chapter4 that contains a working implementation of
Workout Builder.
GitHub branch: checkpoint4.3 (folder – trainer)

We will be dedicating a lot of time to this view so let's understand some specifics here.

Building Personal Trainer

[176]

The exercise list div (id="exercise-list") lists outs the exercises that are part of
the workout in order. To render the exercise list, we use a template for each exercise
item and render it using ng-include="'workout-exercise-tile'" inside ng-
repeat. The template HTML is available at the end of the same file. Functionally,
this template has:

• The delete button to delete the exercise
• Reorder buttons to move the exercise up and down the list as well as to the

top and bottom

The second div element for workout data (id="workout-data") contains the HTML
input element for details such as name, title, and rest duration and a button to save
and reset the workout changes.

The complete thing has been wrapped inside the HTML form element so that we can
make use of the form-related capabilities that AngularJS provides. Nonetheless, what
are these capabilities?

AngularJS forms
Forms are such an integral part of HTML development that any framework that
targets client-side development just cannot ignore them. AngularJS provides a small
but well-defined set of constructs that make standard form-based operations easier.

If we think carefully, any form of interaction boils down to:

• Allowing user input
• Validating those inputs against business rules
• Submitting the data to the backend server

AngularJS has something to offer for all the preceding use cases.

Angular 1.3 forms have a number of new features and improvements
over their predecessors (Angular 1.2.x). While working on the app,
we will highlight any feature that is exclusive to version 1.3.
Since the framework is constantly updated, it is always advisable to
refer to the framework documentation on a specific version to find
out what capabilities are supported.

For user input, it allows us to create two-way bindings between the form input
elements and the underlying model, hence avoiding any boilerplate code that we
may have to write for model input synchronization.

Chapter 4

[177]

It also provides constructs to validate input before it is can be submitted.

Lastly, Angular provides $http and $resource services for client-server interaction
and persisting data to the server.

Since the first two use cases are our main focus in this chapter, let's learn more about
AngularJS user input and data validation support.

AngularJS form constructs
The primary form-related constructs in AngularJS are:

• The form directive and the corresponding FormController object
• The ng-model directive and the corresponding NgModelController object

For the ng-model directive to work correctly, another set of directives is required,
which include:

• input: HTML input extended using directive
• textarea: HTML textarea extended using directive
• select: HTML dropdown extended using directive

What we see here is Angular extending the existing HTML
elements by implementing directives over them.

The first directive that requires our focus is the ng-model directive. Let's explore this
directive and understand how it works.

The ng-model directive
One of the primary roles of the ng-model directive is to support two-way binding
between user input and the underlying model. With such a setup, changes in a
model are reflected in the view, and updates to the view too are reflected back on
the underlying model. Most of the other directives that we have covered so far only
support one-way binding from models to views. This is also due to the fact that
ng-model is only applied to elements that allow user input.

The ng-model directive works with the input, textarea, and select HTML
elements as these are primarily responsible for user input. Let's look at these
elements in more detail.

Building Personal Trainer

[178]

Using ng-model with input and textarea
We used the ng-model directive for the first time when creating the Guess the
Number! game (Chapter 1, Getting Started) where the input (type=number) element
was used for numerical entries.

Open workout.html and look for ng-model. Here too, it has only been applied to
HTML elements that allow user data input. These include input, textarea, and
select. The workout name input setup looks like this:

<input type="text" name="workoutName" id="workout-name"
 ng-model="workout.name">

The preceding ng-model directive sets up a two-way binding between the input and
model property workout.name.

Angular supports most of the HTML5 input types, including text, date, time, week,
month, number, URL, e-mail, radio, and checkbox. This simply means binding
between a model and any of these input types just works out-of-the-box.

The textarea element too works the same as input:

<textarea name="description" ng-model="workout.description" . .
 . > </textarea>

Here we bind textarea to workout.description. Under the cover, there are
directives for each input, textarea, and select, which co-ordinates with the ng-
model directive to achieve two-way binding.

It is important to understand that the ng-model directive is there to
update the model. When the actual update is done, it is influenced by
the supporting directives: input, textarea, and select. For example,
when ng-model is used with input, the change and input events
(yes, input is the name of an event too) are subscribed by the input
directive, and model data is updated when these events are triggered.
This effectively creates a two-way binding between the model data and
the HTML element on which ng-model is declared.

Why don't we verify this binding work? Add a model interpolation expression
against any of the linked input such as this one:

 <input type="text" … ng-model="workout.name">{{workout.name}}

Chapter 4

[179]

Open the workout builder page, and type something in the input, and see how the
interpolation is updated instantaneously. The magic of two-way binding!

Using ng-model with select is a bit different as we can set up the select options in
multiple ways.

Using ng-model with select
Let's look at how select has been set up:

<select … name="duration" ng-model="exercise.duration"
ng-options="duration.value as duration.title for duration in
 durations"></select>

There are no inner option tags! Instead, there is a ng-options attribute. If you recall
the ng-repeat expression, the ng-options expression looks similar. It allows us to
bind an object or array to select. The ng-options directive here binds to an array,
durations. The array looks like this:

$scope.durations = [{ title: "15 seconds", value: 15 },
 { title: "30 seconds", value: 30 }, ...]

The ng-options directive supports multiple formats of data binding. The format we
use is:

[selected] as [label] for [value] in array

Where:

• selected: What (duration.value) gets assigned to ng-model (exercise.
duration) when the item is selected

• label: What is shown (duration.title) in the dropdown
• value: This is an item (duration) in the array that binds to a select option

The selected parameter is optional and only required if we want to set a
subproperty of a selected item to ng-model, which we do want. If it sounds
confusing, update the ng-options expression in the view to:

ng-options="duration.title for duration in durations"

Building Personal Trainer

[180]

Then, add the {{exercise.duration}} interpolation just after the select end tag
(</select>). Refresh the workout builder page and try to select a time duration
from the drop-down box. The interpolation value is an object instead of the integer
time. See the following screenshot:

Revert the ng-options expression and try again, this time the interpolation should
have the correct time duration.

The ng-options directive also supports binding to an object property
and multiple expression formats. Check the documentation on select
to know more about these options at https://code.angularjs.
org/1.3.3/docs/api/ng/directive/select

The ng-options directive gives us great flexibility when it comes to binding an
object or array to select. However, we can still use the traditional option tag
instead of ng-options. The same select tag if implemented with the option tag
would look like this:

<select ... ng-model="exercise.duration">
 <option value="{{duration.value}}"
 label="{{duration.title}}"
 ng-repeat="duration in durations"
 ng-selected="exercise.duration==duration.value">
 {{duration.title}}
 </option>
</select>

In this case, the option tags are generated using ng-repeat. Also, the ng-model
directive binds to the option value property ({{duration.value}}). The
ng-selected directive is used to bind the initial value of the model data to
the view.

Clearly ng-options is a better alternative to option as it provides more flexibility
and is a little less verbose. Given that the option tag approach only works with
string values, it is always advisable to use ng-options.

https://code.angularjs.org/1.3.3/docs/api/ng/directive/select
https://code.angularjs.org/1.3.3/docs/api/ng/directive/select

Chapter 4

[181]

Like input, select too supports two-way binding. We saw how changing select
updates a model, but the model to view binding may not be apparent. To verify
if a model to a view binding works, open the 7 Minute Workout app and verify the
duration dropdowns. Each one has a value that is consistent with model value
(30 seconds).

AngularJS does an awesome job in keeping the model and view in sync using
ng-model. Change the model and see the view updated, change the view and watch
the model updated instantaneously. Starting from Angular 1.3, things just got even
better. In 1.3, we can even control when the updates to the view are reflected on
the model.

If you are using Angular 1.2.x or earlier, you can safely skip the
next section.

Controlling model updates with ng-model-options
(Angular 1.3)
The ng-model-options directive is pretty useful if we want to control when the
model should be updated on view changes. To understand what it has to offer,
let's try out some of its options.

Let's take the same workoutName input and try it out. Update the workoutName input
to this:

<input type="text" … ng-model="workout.name"
 ng-model-options="{updateOn:'blur'}">{{workout.name}}

Open the workout builder page and enter some content in workoutName input.
Model interpolation does not update as we type, but only when we leave the
input—interesting!

The updateOn expression allows us to customize on what event model data should
be updated, and we can configure multiple events here (space-delimited).

Change previous updateOn to:

ng-model-options="{updateOn:'blur mouseleave'}"

Building Personal Trainer

[182]

The model is now updated on blur, as well as when the mouse leaves the input.
To experience the mouseleave event, start typing with the mouse cursor inside the
workoutName input and then move the mouse out. The model interpolation changes
to reflect what we have typed!

Another interesting feature that ng-model-options provides is what we call a
debounce effect. Again, the best way to learn about it is by using it. Update the ng-
model-options value to this:

ng-model-options = "{updateOn:'default blur'

 , debounce: {'default': 1000, 'blur': 0}}"

Refresh the workout builder page and change the workout name. The model does
not get updated as you type, but it eventually does (after one second) without us
leaving the field.

This debounce mechanism dictates how long Angular waits after an event to update
the underlying model. The default keyword previously used is a special string that
signifies the default event of the control.

As we type, the debounce setup waits for a second before applying model changes.
However, in the case of blur, changes are reflected immediately.

Wondering why we require these options? Well, there are indeed some use cases
where these options help. Assume we want to remotely validate if a username
entered by a user exists. In a standard setup, every keypress would result in a remote
call for validating a name. Instead, if we do a model update on blur, only one
remote call would suffice. Type ahead input too can utilize these options (especially
the debounce option) to reduce the number of remote requests.

I would recommend that we stick to the standard behavior and avoid
ng-model-options unless there is a specific need to control model
update timing, as highlighted earlier.

The ng-model-options directive has some other interesting options that we will not
be covering here. Look at the platform documentation at https://docs.angularjs.
org/api/ng/directive/ngModelOptions to learn more about them.

So far, we have looked at ng-model from the data binding perspective, but ng-model
has some other uses too.

https://docs.angularjs.org/api/ng/directive/ngModelOptions
https://docs.angularjs.org/api/ng/directive/ngModelOptions

Chapter 4

[183]

ng-model – beyond data binding
The ng-model directive in itself is a mini MVC component that has its own controller.
Through this controller, it exposes an API to format and validate model data.

Let's try to understand what happens when we create a form and add an input with
ng-model. Consider this screenshot that is based on workout.html form layout:

As we can see from the preceding screenshot, when Angular encounters the form
tag, it executes the form directive. This directive creates an instance of a special
Angular class FormController that is made available to us on the current scope.
See the previous screenshot. $scope.formWorkout is a FormController object and
its name derives from a form name (name="formWorkout"). The form controller
(the FormController object) provides an API to check and manipulate the state of
the form.

On similar lines, when AngularJS encounters the ng-model directives, it creates a
model controller (an instance of the ngModelController class). If the element with
ng-model is defined inside a named form, the model controller instance is available
as a property of the form controller (see $scope.formWorkout.workoutName in
the screenshot).

Similar to FormController, NgModelController too provides an API to manipulate
the model data. The next few sections cover the form, the model directives, and their
respective controllers in more detail.

One question that we may have is, "Why do we need to know about form,
ng-model directives?" Or do we really need to learn about FormController and
NgModelController in detail? These are valid questions that we should address
before getting into specifics.

Building Personal Trainer

[184]

We need to know about the form and ng-model directives from the usage perspective.

The FormController class is a useful utility class to manage the HTML form state.

NgModelController is commonly used to check the validation state of the input
element. It is desirable to understand the inner working of a model controller as the
complete validation framework, data parsing, and formatting are dependent on the
NgModelController implementation.

Once we have a clear understanding of how these controllers work, life becomes a
little easier when dealing with Angular form quirks.

Understanding NgModelController
NgModelController is the command center for the ng-model directive. It provides
an API to:

• Format and parse model data
• Validate model data

To support formatting, parsing, and data validation, AngularJS
implements a pipeline architecture (http://en.wikipedia.org/wiki/
Pipeline_%28software%29). In a pipeline setup, data/control passes from one
component to another in a linear fashion. There is uniformity of interface when it
comes to the components that are part of a pipeline. The output from one component
feeds into the next component in pipeline, so on and so forth.

AngularJS model controller defines two pipelines:

• Formatter: This pipeline is used as $formatters. It is an array of formatter
functions that are called one after another when the model value changes.
The return value of one formatter function acts as an input to another. At the
end of pipeline execution, the value returned by last formatter is rendered in
the view. A formatter function takes one parameter, value, and should return
the same or a transformed value.

• Parser: This pipeline is used as $parsers. This is also an array of parser
functions. Parser pipeline is executed when the view element is updated by
the user and model data needs to be synchronized (the reverse of when the
formatter pipeline is executed). Similar to formatters, parsers too are called in
sequence one after another, passing in the view data. Any parser can update
the data before passing to the next parser in line. The last return value gets
assigned to the underlying model.

http://en.wikipedia.org/wiki/Pipeline_%28software%29
http://en.wikipedia.org/wiki/Pipeline_%28software%29

Chapter 4

[185]

The following screenshot helps us visualize the formatter and parser pipelines in the
context of model and view:

Having such a complex architecture for such a simple concept of model-view
synchronization seems to be an overkill, but that is not the case. In fact, the pipeline
architecture provides enough flexibility and extensibility. The complete AngularJS
validation infrastructure is built upon formatter and parser pipelines.

Angular 1.3 does not employ these pipelines for validation.
Validating user input in Angular 1.3 happens after execution of
formatter/parser pipelines.

Building Personal Trainer

[186]

As the name suggests, these pipelines make formatting a model and parsing
view data easier. For example, if we want to format model data as uppercase in
the input textbox, we can simply define the following formatter (code courtesy:
API docs https://code.angularjs.org/1.3.3/docs/api/ng/type/ngModel.
NgModelController):

function upperCase(value) {
 if (value) { return value.toUpperCase();}
}
ngModel.$formatters.push(upperCase);

An important consequence of using pipeline architecture with ng-model is that
the order in which the pipeline functions are registered affects the overall behavior
of the pipeline and hence ng-model. This holds true for both formatter and parser
pipelines. Any pipeline function can short-circuit (clear) or update the value it
receives during its execution, affecting the behavior of subsequent pipeline functions.

To understand the parser and formatter pipeline better, let's implement a sample
formatter and parser function that can convert a decimal value to an integer value for
our restBetweenExercise input textbox.

Implementing a decimal-to-integer formatter and
parser
The rest between exercise input takes the rest duration (in seconds) between two
exercises. Therefore, it does not make sense to save a decimal value for such input.
Let's create a formatter and parser to sanitize the user input and model data.

Our formatter and parser functions work on similar lines, both converting
the input value into integer format. Add the following watch function to
WorkoutDetailController:

var restWatch = $scope.$watch('formWorkout.restBetweenExercise',
 function (newValue) {
if (newValue) {
 newValue.$parsers.unshift(function (value) {
 return isNaN(parseInt(value)) ? value : parseInt(value);
 });
 newValue.$formatters.push(function (value) {
 return isNaN(parseInt(value)) ? value : parseInt(value);
 });
 restWatch(); //De-register the watch after first time.
 }
});

https://code.angularjs.org/1.3.3/docs/api/ng/type/ngModel.NgModelController
https://code.angularjs.org/1.3.3/docs/api/ng/type/ngModel.NgModelController

Chapter 4

[187]

We register our formatter and parser once the restBetweenExercise model
controller is created. The watch has been registered just to know when the model
controller instance is created.

The expression inside the parser/formatter function is as follows:

return isNaN(parseInt(value)) ? value : parseInt(value);

It checks for the result of parseInt; if it is NaN (not a number), then it returns the
value as it is, otherwise it returns the parsed value. Observe that we are not clearing
the value if it is not a number, instead we are returning it as it is. Other formatters/
parsers in the pipeline can take care of non-numeric values.

Also, we register our parser at the start of the parser pipeline by calling unshift and
formatter at the end of the pipeline by calling push.

We can now test it out. Add the model data interpolation next to the Rest Time label:

Rest Time (in seconds):{{workout.restBetweenExercise}}

Load the workout builder page, enter a numeric non-integer value, and check the
interpolation. It contains the integer part only. See the following screenshot:

This is our parser in action! To test the formatter, we need to provide a model
property with a decimal value. We can set the model value in the controller init
function where we assign the selected workout, something like this:

$scope.workout.restBetweenExercise = 25.53;

Load the workout builder page and we should see the following output:

This is our formatter in action!

Building Personal Trainer

[188]

We now have a fair understanding of formatter and parser pipeline, and have
created a set of formatter/parser set too.

Formatters and parsers can be useful in a number of scenarios when dealing with
user input. For example, we can implement a parser that takes the rest time input
in hh:mm:ss format and converts it into seconds in the model. A formatter can be
created to do the reverse.

It's time now to look at AngularJS validation infrastructure.

AngularJS validation
As the saying goes "never trust user input", and Angular has us covered here! It has a
rich validation support that makes sure data is sanitized before submission.

In AngularJS, we have built-in support for validating input types including text,
numbers, e-mails, URLs, radios, checkboxes, and a few others. Depending on
the input type, we set the parameters (such as <intput type='email'). Correct
validations are automatically setup by Angular.

Other than validations based on input type, there is also support for validation
attributes including the standard required, min, max, and custom attributes such as
ng-pattern, ng-minlength, and ng-maxlength.

Let's add the required validation to workout name (name="workoutName") input
and see how it works. Update the workout name input to this:

<input type="text" name="workoutName" class="form-control"
 id="workout-name" placeholder="Enter workout name. Must be
 unique." ng-model="workout.name" required>

Now the input needs to have a value, else validation fails. However, how can we
know if validation has failed? NgModelController comes to our rescue here. It can
provide the validation state of the input. Let's add a message label after the input
and verify this:

<label ng-show="formWorkout.workoutName.$error.required" ng-
class="{'text-danger': formWorkout.workoutName.$error.required}">
 Workout name is required and it should be unique.</label>

Load the new workout page (#/buider/workouts/new) now and the error label
appears as shown in the following screenshot:

Chapter 4

[189]

Every model controller (such as formWorkout.workoutName shown previously) has
a property $error that contains a list of all errors for the specific ng-model directive.
The $error key (the property name) is the name of the validation (required in our
case) that is failing and the value is true. If the key is not present on the $error object,
it implies the input does not have the corresponding validation error. We use the
$error.required error key to show the validation error and set an error class style.

Adding such a basic validation was easy, but there is a small issue here. The
validation message is shown as soon as we load the form, not an ideal user
experience. For a better user experience, the message should show up only after the
user interacts with the input and not before that. AngularJS can help here too.

The AngularJS model state
Every element that uses ng-model—including input, textarea, and select—has
some states defined on the associated model controller:

• $pristine: The value of this is true as long as the user does not interact
with the input. Any updates to the input field and $pristine is set to false.
Once false, it never flips, unless we call the $setPristine() function on
the model controller.

• $dirty: This is the reverse of $pristine. This is true when the input data
has been updated. This gets reset to false if $setPristine() is called.

• $touched: This is part of Angular 1.3. This is true if the control ever
had focus.

• $untouched: This is part of Angular 1.3. This is true if the control has never
lost focus. This is just the reverse of $touched.

• $valid: This is true if there are validations defined on the input element and
none of them are failing.

• $invalid: This is true if any of the validations defined on the element
are failing.

Building Personal Trainer

[190]

$pristine\$dirty or $touched\$untouched is a useful property that can help us
decide when error labels are shown. Change the ng-show directive expression for the
preceding label to this:

ng-show="formWorkout.workoutName.$dirty &&
 formWorkout.workoutName.$error.required"

Now reload the page, the error message is gone! Nonetheless, remember the control
is still invalid.

As we can see, having a model state gives us great flexibility while managing the
view, but the advantages don't end here. Based on the model state, Angular also
adds some CSS classes to an input element. These include the following:

• ng-valid: This is used if the model is valid.
• ng-invalid: This is used if the model is invalid.
• ng-pristine: This is used if the model is pristine.
• ng-dirty: This is used if the model is dirty.
• ng-untouched: This is part of Angular 1.3. This is used when the input is

never visited.
• ng-touched: This is part of Angular 1.3. This is used when the input

has focus.
• ng-invalid-<errorkey>: This is used for a specific failed validation.
• ng-valid-<errorkey>: This is used for a specific validation that does not

have failure.

To verify it, just load the workout builder page and inspect the workoutName input
element in the developer console:

<input type="text" name="workoutName" class=" form-control ng-pristine
ng-untouched ng-invalid ng-invalid-required" ...>

Add some content to input and tab out. The CSS changes to this:

<input type="text" name="workoutName" class=" form-control
 ng-dirty ng-valid ng-valid-required ng-touched" ...>

These CSS class transitions are tremendously useful if we want to apply visual clues
to the element depending on its state. For example, look at this snippet:

input.ng-invalid { border:2px solid red; }

Chapter 4

[191]

It draws a red border around any input control that has invalid data.

As we add more validations to Workout Builder, observe (in the developer console) how
these classes are added and removed as the user interacts with the input element.

Now that we have an understanding of model states and how to use them, let's get
back to our discussion on validations.

Workout builder validation
The workout data needs to be validated for a number of conditions. Let's get the
complete set of validations from the workout.html file located in the workoutbuilder
folder under chapter4/checkpoint4/app/partials. Copy the inner content from
<div id="workout-data" class="col-sm-3"> and replace the existing content
inside the corresponding div element locally.

Also, comment out the formatter/parser watch that we created earlier to convert
numeric data to integer values. We plan to do validations on the same field and those
validations might interfere with the formatter/parser.

The workout.html view now has a number of new validations including, required,
min, ng-pattern, ng-minlength, and ng-maxlength. Multiple validation error
messages have also been associated with failing validations.

Let's test out one such validation (the restBetweenExercise model field) and
understand some subtleties around AngularJS validations. Change the label Rest
Time again to this:

Rest Time (in seconds): {{ workout.restBetweenExercise }}

Open the new workout builder page and enter some content in the input field of Rest
Time. If we enter a numeric value, the model data updates immediately and gets
reflected in the label, but, if we try to enter a negative value or non-numeric data, the
model property is cleared. There are some important conclusions that we can derive
from this behavior:

• Updates to a model and model validation happen instantaneously, not on
input blur

• Once validations are in place, AngularJS does not allow invalid values to be
assigned to the model from view

Building Personal Trainer

[192]

• This holds good the other way around too. Invalid model data does not show
up in the view either

It is possible to alter this behavior in Angular 1.3. As we saw earlier, ng-
model-options allow us to control when the model is updated.
An option that we did not cover earlier but will make more sense now is
the property allowInvalid available on ng-model-options. If this is
set to true, invalid view values are reflected on the model.

We can confirm the last finding too by setting the restBetweenExecise value to an
invalid value. Update the init method set of WorkoutDetailController:

$scope.workout.restBetweenExercise = -33;

Now load a new workout builder view again. The value in the corresponding input
is empty but the restBetweenExercise model has a value, as shown here:

To understand what happened, we need to understand how AngularJS does
validation. This discussion however needs to be divided into two parts: one
corresponding to pre-Angular 1.3 and the other to Angular 1.3.

Angular 1.3 differs a bit from its predecessors, hence this division. If you are still using
pre-Angular 1.3, you can skip the section dedicated to validation in Angular 1.3.

How validation works (pre-Angular 1.3)
In AngularJS, validations are done using the parser/formatter pipelines. As detailed
earlier, these pipelines are a series of functions called one after another and allowing
us to format/parse data.

Angular too uses these pipelines to register validation functions within the pipeline.
Whenever we use a specific input type (email, url, number), or we apply validation
such as required, min, or max, Angular adds corresponding validation functions to
the two pipelines.

Chapter 4

[193]

These validation functions (inside the pipeline) test the input value against a
condition and return undefined if the validation fails, otherwise, pass the value
along to the next in the pipeline. The end effect is that model or view data is
cleared on validation failures.

For example, have a look at the restBetweenExercise input:

<input type="number" ng-model="workout.restBetweenExercise"
 min="1" ng-pattern="/^-?\d+$/" required ...>

We could have implemented a positive integer value check by only
applying ng-pattern="/^\d+$/". Using two validators (min and
ng-pattern) to achieve the same effect, allows us to showcase the
different types of validations Angular supports.

It has checks for number, format, required, and minimum values. If we inspect the
$formatters and $parsers pipeline for this input, a total of six formatters and
five parsers are registered (a mere observation, not a documented fact). One of the
validation functions that do regular expression-based validation (ng-pattern) is
registered in both the formatter and parser pipelines and its implementation looks
like this (from AngularJS source code 1.2.15):

function(value) {
 return validateRegex(pattern, value);
};

The validateRegex function returns undefined if the regex validation fails, hence
clearing the value.

The following diagram depicts the behavior of the parser pipeline when data is invalid:

Building Personal Trainer

[194]

In the preceding screenshot, the first validation fails at the regex parser and the
second at min value parser.

The formatter validation pipeline that maps model data to a view behaves in a
similar manner to the parser pipeline. An important consequence of this behavior
is that, if data in the model is invalid, it does not show up in the view and the view
element is empty. Due to this, we cannot know the initial state of a model if the
data is invalid and there is no validation error to guide us.

How validation works (Angular 1.3)
One of the major differences between pre-Angular 1.3 and 1.3 is that the validation
functions of 1.3 are not part of parser/formatter pipelines. Validators in 1.3 are
registered on the model controller property object $validators. Angular calls
each function defined on the $validators property to validate the data.

Another difference is that validator functions in 1.3 return a Boolean value to
signify if the validation passed or failed. In pre-Angular 1.3, the original value was
returned if validation passed, and undefined when validation failed. To contrast the
approach, look at the regex validator (ng-pattern) implementation in Angular 1.3.3:

function(value) {
 return ctrl.$isEmpty(value) || isUndefined(regexp)
 || regexp.test(value);
};

This function returns a Boolean result.

Due to the way validators are set up in Angular 1.3, there are some important
implications:

• Formatters and parsers always run before validators get a chance to validate
input. In pre-Angular 1.3, we could control the order.

• In the case of a parser pipeline (the one that converts a view value to a
model) specifically, if there is failure during parsing, the validator pipeline
is not called.

• In pre-Angular 1.3, a failed validator in the pipeline used to clear the input
value, and the subsequent validators received undefined. In 1.3, each
validator gets a chance to validate the input value irrespective of the
outcome of other validations.

Chapter 4

[195]

Look at the following diagram that highlights the data flow for Angular 1.3 validators:

Hope this discussion clears things up in terms of how validation in AngularJS
works. Having this understanding is essential for us while we build bigger and more
complex forms for our apps.

Angular 1.3 has another form of benefit. It can help us manage validation messages
for failed validations more effectively. Angular 1.3 introduces two new directives:
ng-messages and ng-message, to manage validation messages. Let's learn how these
directives work.

Managing validation error messages with ng-messages
(Angular 1.3)
Some inputs contain a lot of validations and controlling when a validation message
shows up can become complex. For example, the restBetweenExercise inputs have
a number of validations. To highlight failed validation, there are four error labels
that look like this:

<label ng-show="formWorkout.restBetweenExercise.$dirty &&
 formWorkout.restBetweenExercise.$error.required" class=
 "text-danger">Time duration is required.</label>

Angular 1.3 provides a better mechanism to show/hide an error message based on
the state of the control. It exposes two directives: ng-messages and ng-message that
allow us to show/hide error messages, but with a less verbose syntax.

Building Personal Trainer

[196]

The restBetweenExercise error messages with the ng-messages directive look
like this:

<div ng-messages="formWorkout.restBetweenExercise.$error"
ng-if="formWorkout.restBetweenExercise.$dirty">
 <label ng-message="required" class="text-danger">
Time duration is required.</label>
 <label ng-message="number" class="text-danger">
Time duration should be numeric.</label>
 <label ng-message="min" class="text-danger">
Only positive integer value allowed.</label>
 <label ng-message="pattern" class="text-danger">
Only integer value allowed.</label>
</div>

To try it out, comment the existing validation labels for restBetweenExercise, and
add the preceding code after the restBetweenExercise input.

These directives belong to a new Angular module ngMessages, hence a script
reference to angular-messages.js needs to be added to index.html:

<script src="http://ajax.googleapis.com/ajax/libs/angularjs/
 1.3.3/angular-messages.js"></script>

And the module needs to be referenced in app.js, as follows:

angular.module('app', ['ngRoute', . . . , 'ngMessages']).

Open the workout builder page and play around with the restBetweenExercise
input. The validation messages are now being managed by the ng-messages directive.

The ng-messages directive basically watches the state of an object (object properties)
and shows/hides the message (using ng-message) based on the state changes.

The ng-messages directive is normally used with the $error property of the model
controller. Whenever an error key on the $error object is true, the corresponding
ng-message is displayed. For example, empty input for restBetweenExercise has
only one $error key:

 { "required": true }

Chapter 4

[197]

Hence the following error label shows up:

<label ng-message="required" class="text-danger">
 Time duration is required.</label>

Interestingly, if we enter a negative decimal value such as -22.45, the $error now
has this:

{ "min": true, "pattern": true }

However, only the min object-related message is shown. This is the standard
behavior of the ng-messages directive whereas it only shows the first failed
validation. To show all the failed validations, we need to add another property
to the ng-messages HTML:

<div ng-messages=". . ." ng-messages-multiple>

The ng-messages directive also supports message reuse and message override,
which becomes relevant when working on large apps that have numerous messages.
We would not be covering this topic, but it is recommended that you look at
the framework documentation on ng-messages (https://code.angularjs.
org/1.3.3/docs/api/ngMessages) to learn more about this scenario.

The ng-messages directive is a pretty useful directive and if you are on Angular 1.3,
it's better to use the ng-messages directive to show validation errors instead of the
standard ng-show/ng-hide-based approach.

The chapter4\checkpoint4 path contains the complete
implementation done thus far, including all validations added
for workout.
GitHub branch: checkpoint4.4 (folder – trainer)

Let's now do something a little more interesting and a bit more complex. Let's
implement a custom validation for an exercise count!

https://code.angularjs.org/1.3.3/docs/api/ngMessages
https://code.angularjs.org/1.3.3/docs/api/ngMessages

Building Personal Trainer

[198]

Custom validation for an exercise count
A workout without any exercise is of no use. There should at least be one exercise in
the workout and we should validate this restriction.

The problem with exercise count validation is that it is not something that the user
inputs directly and the framework validates. Nonetheless, we still want a mechanism
to validate the exercise count in a manner similar to other validations on this form.

Since Angular validations are built over ng-model, our custom solution too will
depend on it. Add these lines inside the exercise list div element (id="exercise-
list") at the very top:

 </
span>
 <div class="alert alert-danger" ng-show =
 "formWorkout.exerciseCount.$dirty &&
 formWorkout.exerciseCount.$error.count">
 The workout should have at least one exercise!
</div>

The previous span has an ng-model attribute pointing to exercise count. Quite
interesting!

A standard HTML span does not support a name attribute. Add to that, the ng-model
directive on span too makes no sense as the user is not directly manipulating the
exercise count. Still, we have defined both the name and ng-model attribute on the
span object.

Remember what we learned in the ng-model—beyond data binding section?
When Angular encounters ng-model on an element inside a form, it creates an
NgModelController object and exposes it on the scope using the name attribute
(exerciseCount). The span setup is there to just get hold of the model controller so
that the exercise count validator can be registered.

We are not using the ng-model directive in its true sense here. There is no two-way binding
involved. We are only interested in using the model controller API to do custom validation.

Let's see how to implement the custom validation logic. Add these two watches to
WorkoutDetailController:

$scope.$watch('formWorkout.exerciseCount', function (newValue) {
 if (newValue) {
 newValue.$setValidity("count",
 $scope.workout.exercises.length > 0);

Chapter 4

[199]

 }});

$scope.$watch('workout.exercises.length',
 function (newValue, oldValue) {
 if (newValue != oldValue) {
 $scope.formWorkout.exerciseCount.$dirty = true;
 $scope.formWorkout.$setDirty();
 $scope.formWorkout.exerciseCount
.$setValidity("count", newValue > 0);
 }});

The first watch is on formWorkout.exerciseCount, an instance of
NgModelController. This watch contains the initialization code for the exercise
count validation. The watch is required because the WorkoutDetailController
completes execution before the ng-model directive gets the chance to instantiate and
attach the exerciseCount model controller to formWorkout. This watch gets fired
once the model controller is available. We check for the number of exercises in the
workout and set the validity of the model using the API method:

 newValue.$setValidity("count",
 $scope.workout.exercises.length > 0);

The $setValidity function is used to set the validation key ("count") on the
$error object for a failed validation. The second parameter signifies whether
the validation defined by the key (the first parameter) is valid. A false value
implies the validation has failed. The previous HTML uses formWorkout.
exerciseCount.$error.count to show the error message accordingly.

Next, we need a mechanism to re-evaluate our validation logic when exercises are
added or removed from the workout. The second watch takes care of this. Whenever
the length of the exercises array changes, the watch is fired.

The watch implementation sets the form and the exerciseCount model controller,
$dirty, as the exercises array has changed. Finally, the watch re-evaluates the
count validation by calling $setValidity. If the workout has no exercise, the
expression $scope.workout.exercises.length > 0 returns false, causing the
count validation to fail.

Since we are implementing our own custom validation, we need to explicitly set
the $dirty flag at both the form and element level. Form controllers have an API
specifically for that $setDirty property, but in the model controller we just set the
$dirty property directly.

Building Personal Trainer

[200]

Open the new workout builder page, add an exercise, and remove it; we should see
the error The workout should have at least one exercise!.

Implementing custom validation directly inside the controller is not a
standard practice. What we have here is an ad hoc setup for validation.
A custom validator is otherwise implemented using validator
functions, which are registered with the model controller's parser and
formatter pipelines for validation.
Also, given the fact that custom validations are implemented using
directives, we plan to postpone this discussion to later chapters. We
implement one such validation in Chapter 6, Working with Directives.
The validation checks the uniqueness of the workout name field and
returns an error if a workout already exists with the specific name.
In case you are having issues with validation, code updates so far
are available in the checkpoint5 folder under chapter4 in the
companion codebase.
GitHub Branch: checkpoint4.5 (folder – trainer)

What we did using custom validation could have been easily done by using an error
label and ng-class without involving any of the model validation infrastructure.
By hooking our custom validation into the existing validation infrastructure, we do
derive some benefits. We can now determine errors with a specific model and errors
with the overall form in a consistent and familiar manner.

To understand how model validation rolls up into form validation, we need to
understand what form-level validation has to offer. However, even before that, we
need to implement saving the workout, and call it from the workout form.

Saving the workout
The workout that we are building needs to be persisted (in-memory only).
The first thing that we need to do is extend the WorkoutService and
WorkoutBuilderService objects.

WorkoutService needs two new methods: addWorkout and updateWorkout:

service.updateWorkout = function (workout) {
 var workoutIndex;
 for (var i = 0; i < workouts.length; i++) {
 if (workouts[i].name === workout.name) {
 workouts[i] = workout;

Chapter 4

[201]

 break;
 }
}
 return workout;
};

service.addWorkout = function (workout) {
 if (workout.name) {
 workouts.push(workout);
 return workout;
 }
}

The addWorkouts object does a basic check on the workout name and then pushes
the workout into the workout array. Since there is no backing store involved, if we
refresh the page, the data is lost. We will fix this in the next chapter where we persist
the data to a server.

The updateWorkout object looks for a workout with the same name in the existing
workouts array and if found, updates and replaces it.

We only add one save method to WorkoutBuilderService as we are tracking the
context in which workout construction is going on:

service.save = function () {
 var workout = newWorkout ?
 WorkoutService.addWorkout(buildingWorkout):
 WorkoutService.updateWorkout(buildingWorkout);
 newWorkout = false;
 return workout;
};

The save method calls WorkoutService, addWorkout, or updateWorkout based on
whether a new workout is being created or an existing one is being edited.

From a service perspective, that should be enough. Time to integrate the ability
to save workouts into WorkoutDetailController and learn more about the
form directive!

Building Personal Trainer

[202]

The AngularJS form directive and form
validation
Forms in Angular have a different role to play as compared to traditional forms that
post data to the server. We can confirm that by looking at our form definition:

<form class="row" name="formWorkout" novalidate>

It is missing the standard action attribute.

The novalidate attribute on the form directive tells the browser not
to do inbuilt input validations.

The standard form behavior of posting data to the server using full-page post-back
does not make sense with a SPA framework such as AngularJS. In Angular, all server
requests are made through AJAX invocations originating from controllers, directives,
or services.

The form here plays a different role. When the form encapsulates a set of input
elements (such as input, textarea, and select) it provides an API for:

• Determining the state of the form, such as whether the form is dirty or pristine
based on the input controls on it

• Checking validation errors at the form or control level

If you still want the standard form behavior, add the
action attribute to the form, but this will definitely
cause a full-page refresh.

Similar to input, textarea, and select, form too is a directive that on execution
creates a special FormController object and adds it to the current scope. The
earlier form declaration creates a controller with the name formWorkout in the
WorkoutDetailController scope.

Before we look at the form controller API in more detail, let's add the save method to
Workout Builder to save the workout when the Save button is clicked. Add this code
to WorkoutDetailController:

$scope.save = function () {
 if ($scope.formWorkout.$invalid) return;
 $scope.workout = WorkoutBuilderService.save();
 $scope.formWorkout.$setPristine();
}

Chapter 4

[203]

We check the validation state of the form using its $invalid property and then call
the WorkoutBuilderService.save method if the form state is valid. Finally, we set
the form to pristine state by calling the $setPristine method on the form controller.

Except for the new form controller, the rest of the API is pretty standard. Let's look at
the controller API in a little more detail.

The FormController API
FormController plays a similar role for form HTML, as NgModelController plays
for input elements. It provides useful functions and properties to manage the state of
the form. We already have used some API functions and properties in the previous
save method. The API includes the following functions:

• $addControl(modelController): This API method is used to register a
model controller (NgModelController) with the form. The input-related
directives call this internally. When we register a model controller with a
form, changes in the model controller affect the state of the form and hence
the form controller. If the model controller marks input as dirty, the form
becomes dirty. If there are validation errors in the model controller, then it
results in the form state changing to invalid as well.

• $removeControl(modelController): When we remove the model controller
from the form controller, it no longer tracks the model controller state.

• $setValidity(validationKey, status, childController): This is
similar to the $setValidity API of NgModelController but is used to set
the validation state of the model controller from the form controller.

• $setDirty(): This is used to mark the form dirty.
• $setPristine(): This is used to make the form pristine. This is often used to

mark the form pristine after persisting the data to server on save. When the
form loads for the first time, it is in the pristine state.

The $setPristine call propagates to all model
controllers registered with the form, so all child inputs are
also set back to the pristine state. We call this function in
our WorkoutDetailController.save function too.

• $setUntouched(): This is part of Angular 1.3. This is used to mark the
form untouched. This is mostly called in sync with $setPristine, after
data is saved.

Building Personal Trainer

[204]

Other than the state manipulation API, there are some handy properties that can be
used to determine the state of the form. These include $pristine, $dirty, $valid,
$invalid, and $error. Except for the $error property, the rest are similar to model
controller properties.

We use the $dirty property with the workout title:

<h2 class="col-sm-5 col-sm-offset-1">{{workout.title}}
{{formWorkout.$dirty?'*':''}} ...

It appends an asterisks (*) symbol after the title when the form is dirty.

One excellent use case for $pristine\$dirty properties is to
warn the user when he/she navigates away from a form that is
dirty, to save any changes.

We use the $invalid property of the form controller to verify if there are validation
errors before we perform a save in WorkoutDetailController.

The $error property on the form controller is a bit more complex. It aggregates all
failures across all contained inputs. The $error key (property name) corresponds
to the failing error condition and the value is an array of controllers that are invalid.
For a model controller, the value was just true or false. If we put a breakpoint on the
$scope.save function on a new workout page, and click on Save, the $error object
looks something like this:

The count error is for the custom validation we did for the exercise count. Three
other validation errors are pertaining to empty inputs. Play around with the
input elements and check how the formWorkout.$error object behaves. See how
consistent it is with the individual model controller errors.

With this, we have covered most of the FormController API. The workout
can now be saved, and later reopened for editing from workout the list page
(#/builder/workouts).

Since forms are so commonplace in HTML development, there are some standard
use cases and quirks that we encounter while using them with Angular. The next
few sections talk about these quirks and use cases.

The first one is related to validation/error messages not shown when the form
is submitted.

Chapter 4

[205]

Fixing the saving of forms and validation messages
To observe the first quirk, open a new workout builder page and directly click on the
Save button. Nothing is saved as the form is invalid, but validations on individual
form input do not show up at all. It now becomes difficult to know what elements
have caused validation failure. The reason behind this behavior is pretty obvious. If
we look at the error message bindings for any input element, it looks like this:

ng-show="formWorkout.workoutName.$dirty &&
 formWorkout.workoutName.$error.required"

Remember that earlier in the chapter, we explicitly disabled showing validation
messages till the user has touched the input control. The same issue has come back to
bite us and we need to fix it now.

If we look at the model controller API, we do not have a function to mark the
model dirty, in fact we have a method that is the other way around, $setPristine.
Changing/manipulating the $dirty property directly is not desirable as this and
similar properties such as $pristine, $valid, and $invalid are there to determine
the state of the model controller and not to update its state.

We broke this rule earlier when we implemented the exercise count
validation. We explicitly set the $dirty flag as there was no other
alternative available.

Therefore, setting the $dirty flag is ruled out; instead we plan to employ a nifty
trick. Let's introduce a new variable, submitted. This variable is set to true on the
Save button click. Update the save implementation by adding the highlighted code:

$scope.save = function () {
 $scope.submitted = true; // Will force validations
 if ($scope.formWorkout.$invalid) return;
 $scope.workout = WorkoutBuilderService.save();
 $scope.formWorkout.$setPristine();
 $scope.submitted = false;
}

Nonetheless, how does this help? Well, there is another part to this fix that requires
us to change the error message related to the ng-show expression. The expression
now changes to:

ng-show="(submitted || formWorkout.workoutName.$dirty) &&
 formWorkout.workoutName.$error.required"

Building Personal Trainer

[206]

With this fix, the error message is shown when the control is dirty or form Submit
button is pressed (submitted is true). This expression fix now has to be applied to
every ng-show directive where $dirty check is done.

Angular 1.3 has this feature inbuilt. The form controller in Angular
1.3 already has $submitted, and its behavior matches our own
implementation.
Look up Angular documentation on form and FormController
to learn more about the $submitted property.

Time to refactor the code as the expression has become a little complex. Add a
hasError method in WorkoutDetailController:

$scope.hasError = function (modelController, error) {
 return (modelController.$dirty || $scope.submitted) && error;
}

The function does a similar check to the previous one in ng-show, but here we pass,
in the controller, the error state parameter. The ng-show expression now becomes:

ng-show = "hasError(formWorkout.workoutName,
 formWorkout.workoutName.$error.required)"

Apply similar updates to all ng-show directives where $dirty is used.

If we now open the new workout builder page and click on the Save button, we
should see all validation messages on the input controls:

Chapter 4

[207]

Another common issue that we might encounter when we use AngularJS services
and share data is unwanted model updates. To demonstrate this:

1. Open the existing 7 Minute Workout app, delete some of the exercises, and
update some fields.

2. Then, navigate away from the page by clicking on the Home link on the
top nav.

3. Now open the 7 Minute Workout app again.

The changes have persisted! However, we did not save the workout.

Building Personal Trainer

[208]

Fixing unwarranted model updates
Why did model changes persist in spite of not saving them? Any guesses? To give
you a hint, the issue is not with the form or controller implementation, but the
service implementation. Look at the getWorkout(name) function under shared\
services.js.

Time's up! Let's understand why. The getWorkout(name) implementation looks
like this:

var result = null;
angular.forEach(service.getWorkouts(), function (workout) {
 if (workout.name === name) result = workout;
});
return result;

We iterate over the workout list and return the workout that matches the workout
name. There lies the problem!

We return an element from the workout array (by calling service.getWorkouts())
and then bind it directly in the workout builder page. Due to this, any change to the
workout in the workout builder affects the actual workout data. To fix the problem,
we just need to return a copy of the workout instead of the original.

Update the getWorkout method implementation by changing the if condition
to this:

if (workout.name === name) result = angular.copy(workout);

That's it! Go ahead and try updating the existing workout and navigate away. This
time, changes are not persisted when we leave the page and come back.

This issue is also due to the get methods (getWorkout and
getWorkouts) working on local data. If data is retrieved from a
remote server every time, we will not encounter this problem.

Resetting the form to its initial state is another common requirement that we should
add to our Workout Builder app.

Chapter 4

[209]

Resetting the form
The standard way of resetting the form is to call the reset method on the form object
such as document.forms["formWorkout"].reset() or to use input type="reset"
, which clears all the form inputs. The drawback of this approach is that fields are
completely cleared, instead of reverting back to their original content.

For Workout Builder, we will reset the form to its initial state using a similar approach
outlined in the last section. Open workout.js, update WorkoutDetailController,
and add the reset method:

$scope.reset = function () {
 $scope.workout =
WorkoutBuilderService.startBuilding($routeParams.id);
 $scope.formWorkout.$setPristine();
 $scope.submitted = false;
};

We reset the workout object, set the form to pristine and the submitted variable
to false for future validation. The startBuilding function internally calls the
getWorkout method on WorkoutService. As we saw in the last section, getWorkout
always returns a new copy of a workout, which finally gets assigned to $scope.
workout as just mentioned, causing the form to reset to its original state.

However, what about the $routeParams reference given in the preceding code?
$routeParams is an AngularJS service that complements the $route service and
contains data about specific URL fragments. Since we have used it in save, why not
formally introduce it and learn a bit more about it?

AngularJS $routeParams
The $routeParams service contains route fragment values derived from the current
route, for routes that are dynamic in nature. To understand it better, let's look at the
route configuration for Workout Builder in the edit mode:

$routeProvider.when('/builder/workouts/:id', {

The previous route has a variable part :id that changes based on the name of the
workout. For 7 Minute Workout, the route is this:

/builder/workout/7minuteworkout

Building Personal Trainer

[210]

The $routeParams service maps the literal string value 7minuteworkout to the
id property and makes the data available to any controller/service (in this case,
$routeParams.id).

In the case of a new workout, the route is /builder/workouts/new, and does not
use any placeholder. Therefore, $routeParams.id is undefined in this case.

Coming back to the reset implementation, remember to add $routeParams
dependency to the WorkoutDetailController declaration for the reset function to
work correctly.

Finally, to bind the method to the form element, add a reset button to the form after
the save button declaration:

<button class="btn btn-primary pull-right"
 ng-click="reset()">Reset</button>

We can now try it out. Create a new workout or open the existing one. Make some
changes and click on Reset. The form should be reset to the state when it was loaded.

The reset is done, what next? We have still not implemented validation for the
exercise duration of exercises that are dynamically added to the workout. Let's take
care of this scenario too.

Dynamically generated inputs and forms
For dynamically generated form elements, as we have in the exercise list section, we
still want to validate data entered by the user. AngularJS falls short in this scenario
as the obvious validation mechanism does not work.

Ideally something like this should work for our exercise list in ng-repeat:

<input type="number" name="{{exercise.name}}-duration" ng-
model="exercise.duration"/>

Sadly, this does not work. AngularJS literally creates a model controller with the
name {{exercise.name}}-duration. The reason is that the name attribute on the
form and input (with ng-model) do not support interpolations. There is still an open
issue on this (visit https://github.com/angular/angular.js/issues/1404 for
more information).

This issue has been fixed in Angular 1.3. The approach detailed later
and that uses nested forms is still a better approach. With nested
forms, we do not need to use interpolation expression for ng-model
or validation messages (such as formworkout[{{exercise.
name}}-duration]).$error.

https://github.com/angular/angular.js/issues/1404

Chapter 4

[211]

The mechanism or workaround that Angular gives us to support dynamically
generated inputs is the ng-form directive. This directive behaves in a similar manner
to the form directive. It allows us to create nested forms and do individual form-
level validation, with each form having its own set of inputs. Let's add ng-form and
validate exercise duration.

Validating exercise duration with ng-form
Change the exercise list item template script (id="workout-exercise-tile") and
wrap the select tag into an ng-form directive together with a validation label:

<ng-form name="formDuration">
 <select class="select-duration form-control" name="duration"
 ng-model="exercise.duration" ng-options="duration.value as
 duration.title for duration in durations" required>
 <option value="">Select Duration</option>
 </select>
 <label ng-show=
 "hasError(formDuration.duration,
 formDuration.duration.$error.required)"
 class="text-danger">Time duration is required.</label>
</ng-form>

The ng-form directive behaves similarly to form. It creates a form controller and
adds it to the scope with the name formDuration. All validations within the ng-
form happen in the context of the formDuration form controller as we can see in
the previous binding expressions. This is possible because ng-repeat creates a new
scope for each item it generates.

Other than the formDuration added to the ng-repeat scope, internally the
formDuration controller is also registered with the parent form controller
(formWorkout) using the controller API function $addControl.

Due to this, the validation state and dirty/pristine state of the child forms roll up
into the parent form controller (formWorkout). This implies:

• If there are validation errors at the child form controller, even the parent
form controller state becomes invalid ($invalid returns true for parent)

• If the child form controller is set to dirty, the parent form controller is also
marked dirty

• Conversely, if we call $setPristine on the parent form controller, all child
form controllers are also reset to the pristine stage

Building Personal Trainer

[212]

Refresh the workout builder page again and now the validation on exercise duration
also works and integrates well with the parent formWorkout controller. If there
is any error in the exercise duration input, the formWorkout controller is also
marked invalid.

If you are having problems with the implementation, check
checkpoint6 folder under chapter4 for a working
implementation of what we have achieved thus far.
Checkpoint6 also contains implementation for Delete Workout
that we will not cover. Look at the code and see where it has
been extended to support the delete functionality
GitHub branch: checkpoint4.6 (folder – trainer)

Other than workout persistence, we now have a fully functional workout builder. A
good time to start building some customized workouts!

We have now reached a point where we should feel comfortable working with
Angular. The only major topics left are client-server interaction, directives, and unit
testing. However, from what we have learned thus far, we have enough ammunition
to build something decent. Purposefully, we have overlooked one important
topic that is critical for us to understand before we take up any serious Angular
development: scope inheritance.

We need to understand the nuances of scope inheritance (prototypal inheritance).
Scope inheritance behavior can stump even the most experienced developers.
To learn about it, we need to revisit the concept of scopes, but this time from an
inheritance hierarchy perspective.

Revisiting Angular scopes
To refresh our memory, scopes in Angular are created mostly as part of directive
execution. Angular creates a new scope(s) whenever it encounters directives that
request for a new scope. The ng-controller, ng-view, and ng-repeat directives
are good examples of such directives.

Depending upon how these directives are declared in HTML, the scope hierarchy
is also affected. For nested directives that request for the new scope, more often
than not, the child directive scope inherits from the parent directive scope. This
inheritance adheres to the standard JavaScript prototypal inheritance.

Chapter 4

[213]

Some directives request for an isolated scope on execution. Such scopes
do not inherit from their parent scope object.

Prototypal inheritance in JavaScript can catch developers off-guard, especially the ones
who come from an object-oriented background (lot of us do). In prototypal inheritance,
an object inherits from other objects, as there is no concept of classes here.

There is a good tutorial available online at http://javascript.
info/tutorial/inheritance, in case you are interested in
exploring prototypal inheritance in depth.

Prototypal inheritance on the surface seems to work similarly to class-based
inheritance. An object derives from other objects, and hence can use the parent
objects' properties and functions. Nonetheless, there is a big difference when it comes
to updating/writing to properties.

In prototypal inheritance, the parent object and preceding prototypal chain are
consulted for reads, but not for writes.

Interesting! Let's try to understand this hypothesis with examples. All the following
examples use the Angular scope object.

You can try these snippets in jsFiddle. Here is a basic fiddle for this
at http://jsfiddle.net/cmyworld/9ak1gahe/. Remember to
open the browser debugger console to see the log messages.

Consider this piece of code and corresponding scope setup:

http://javascript.info/tutorial/inheritance
http://javascript.info/tutorial/inheritance
http://jsfiddle.net/cmyworld/9ak1gahe/

Building Personal Trainer

[214]

$scope.$new is a scope API function that creates the new child scope
that inherits prototypically from the $scope object.

The first console.log logs the message property (Hello World) defined on the
parent $scope. During reads, JavaScript looks for a message property on the
childScope object. Since childScope does not have this property, it traverses up
the hierarchy (the parent object) in search of message, and finds it on the parent
$scope object.

The subsequent assignment childScope.message = "Hello New World";, should
have then overwritten the message variable on the parent object, but it does not!
Instead, a new message property is created on childScope, and it shadows the
parent $scope.message property. Clearly, reads traverse the prototypal chain but
writes do not.

This premise holds good for the primitive property (number, Boolean, date, and
string) and object assignments, but if the property is declared on an object (declared
on the parent object), changes to it on the child scope are reflected in the parent
object too. Consider this variation to the preceding example:

This time no new property is created on the childScope object, and the last two
console.log functions print the same message ('Hello Object World - Child').

The write did not happen on childScope this time due to a subtle read here.
JavaScript had to first look for the myObject property before it could resolve the
message reference. The myObject property was found on parent $scope and that
was used.

Chapter 4

[215]

Consider another variation:

$scope.myObject = { message: 'Hello Object World' };
var childScope = $scope.$new(); //creates a child scope

childScope.myObject= {message:'Hello Object World - Child'};
console.log(childScope.myObject.message);
console.log($scope.myObject.message);

This time, like the first case, a new property myObject is created on childScope.
$scope.myObject and childScope.myObject are two different objects and can be
manipulated independently.

Now that we understand the subtleties, what are the implications? This behavior
affects two-way binding and property assignments.

Strangely enough, we have not faced this issue, in spite of our working on forms that
have a number of these two-way bindings (ng-model). There are two good reasons
for this:

• The complete form container has only one scope (except the exercise list
scopes that are created due to ng-repeat), which is the scope created as part
of ng-view.

• None of the ng-model expressions that we have used bind to a primitive
object. Each one binds to an object property, such as ng-model="workout.
name".

Always use the . notation (bind to object property)
while binding to ng-model to avoid prototypal
inheritance nuances.

It is not very difficult to create something that highlights this two-way binding issue,
in the context of real angular controllers and directives. Look at this jsFiddle http://
jsfiddle.net/cmyworld/kkrmux2f. There are two sets of input, both used to enter
user-specific data. The first set of inputs has the two-way binding issue, whereas the
second set works just fine.

Let's try another case: and this time on the workout builder view.

http://jsfiddle.net/cmyworld/kkrmux2f
http://jsfiddle.net/cmyworld/kkrmux2f

Building Personal Trainer

[216]

The use case is, whenever the user clicks on any of the exercise tiles that are part
of the workout, we need to show the exercise description between the tiles and the
input fields. Simple enough?

Let's begin the pursuit. Update the exercises-list div style to this:

<div id="exercises-list" class="col-sm-4 col-sm-offset-1">

Add a new div element for the exercise description just around the workout-data
parameter of div:

<div id="exercise-description" class="col-sm-1">
 {{selectedExercise.details.description}}</div>
<div id="workout-data" class="col-sm-3">

Finally, update the workout.exercises ng-repeat directive to this:

<div ng-repeat="exercise in workout.exercises" class="
 exercise-item" ng-click="selectedExercise=exercise">

The exercise-description parameter of div has an interpolation to a variable
selectedExercise that should contain the current selected exercise. We assign
selectedExercise when the exercise tile is clicked, inside the ng-click expression.

The implementation looks correct but it does not work. Open the 7 Minute Workout
app and try it yourself. Clicking on any of the workout tiles has no effect. Again, the
reason is prototypal inheritance!

When we used selectedExercise=exercise in ng-repeat, the property got
created on a scope that was created as part of the ng-repeat execution, and not on
the original scope.

How can we fix this? Well, one option is to change the ng-click directive to this:

ng-click="$parent.selectedExercise=exercise"

Make the change, and refresh the page, and try clicking again. This time it works,
as shown here:

Chapter 4

[217]

$parent is a special property on every $scope object that points to the parent scope
from which the scope was created.

While the usage of $parent does solve this problem, it is not the recommended way
to achieve this fix. The fix is brittle and whenever a new scope is added (this can
be due to the addition of a new directive at some point in the future) in the HTML
hierarchy, the $parent link might not point to the correct parent scope. In such a
scenario, we have to fix the expression again, leading to undesired results such as,
$parent.$parent.$parent.selectedExercise.

The correct way to fix this would be to create an object with a selected exercise
property to track the exercise. In WorkoutDetailController, add a variable to
track the selected exercise at the top:

$scope.selected = {};

Change the interpolation for the description to this:

{{selected.exercise.details.description}}

Change the ng-click expression to this:

ng-click="selected.exercise=exercise"

We have a perfectly working solution for our use case. This time, we track the
selected exercise as a sub property (exercise) of selected object and hence things
just work.

That's it on scopes inheritances and the nuances around it. A very important topic
that is essential to grasp to be a pro Angular dev.

Another excellent discussion on this topic is available under this Angular
wiki article at https://github.com/angular/angular.js/wiki/
Understanding-Scopes. An essential and highly informative read!

Looking back at the goals that we had for Personal Trainer, we still have stuff
pending. Adding/editing new exercises needs to be implemented and lastly the
Personal Trainer app needs to integrate with the implementation of 7 Minute Workout
(Workout Runner). The Workout Runner app needs to support the running of any
workout that we build using Personal Trainer.

https://github.com/angular/angular.js/wiki/Understanding-Scopes
https://github.com/angular/angular.js/wiki/Understanding-Scopes

Building Personal Trainer

[218]

We will be ending this chapter here. But one of the earlier tasks of creating an
exercise builder is something I will urge everyone to go ahead and implement. The
solution is similar to Workout Builder except the data elements are exercise-specific.
It will be a good exercise for us to reinforce our learnings.

Once done, you can compare your implementations with the
one available in chapter4/checkpoint7.
GitHub branch: checkpoint4.7 (folder – trainer)

Integrating the Personal Trainer app with 7 Minute Workout is something we will take
up in the next chapter.

Time to summarize what we have learned thus far!

Summary
We now have a Personal Trainer app. The process of converting a specific 7 Minute
Workout app to a generic Personal Trainer app has helped us learn a number of
new concepts.

We started the chapter by defining the new app requirements. Then, we designed
the model as a shared service.

We defined some new views and corresponding routes for the Personal Trainer app.
We also used the existing routing infrastructure to set up a navigation system by
extending routes. We then turned our focus to workout building.

One of the primary technological focuses in this chapter was AngularJS forms.
The workout builder view employed a number of form input elements and we
implemented all common form scenarios.

We worked with the ng-model directive, explored the NgModelController API,
and learned about formatter and parser pipelines and the role these pipelines play
in formatting, parsing, and data validation.

Chapter 4

[219]

We explored Angular validation in depth, and implemented a custom validation
using the NgModelController API.

We covered nested forms and how to manage dynamically generated input controls
using the ng-form directive.

Lastly, we learned about the nuances of scope inheritance, and how to avoid some
scope inheritance gotchas while building apps with Angular.

The next chapter is all about client-server interaction. The workouts that we create
need to be persisted. In the next chapter, we build a persistence layer that allows us
to save workout data on the server.

Before we conclude this chapter, here is a friendly reminder. If you have not
completed the exercise building routine for Personal Trainer, go ahead and do it.
It's always a great and fulfilling experience to try out new stuff unassisted. You
can always compare your implementation with what has been provided in the
companion codebase.

Adding Data Persistence to
Personal Trainer

It's now time to talk to the server! There is no fun in creating a workout, adding
exercises, and saving it, to later realize that all our efforts are lost because the data is
not persisted anywhere. We need to fix this.

Seldom are applications self-contained. Any consumer app, irrespective of the size,
has parts that interact with elements outside its boundary. And with web-based
applications, the interaction is mostly with a server. Apps interact with the server
to authenticate, authorize, store/retrieve data, validate data, and perform other
such operations.

This chapter explores the constructs that AngularJS provides for client-server
interaction. In the process, we add a persistence layer to Personal Trainer that loads
and saves data to a backend server.

The topics we cover in this chapter include:

• Provisioning a backend to persist workout data: We set up a MongoLab
account and use its REST API to access and store workout data.

• Understanding the $http service: $http is the core service in Angular to for
interacting with a server over HTTP. You learn how to make all types of GET,
POST, PUT, and DELETE requests with the $http service.

• Implementing, loading, and saving workout data: We use the $http service
to load and store workout data into MongoLab databases.

• Creating and consuming promises: We touched upon promises in the earlier
chapters. In this chapter, not only do we consume promises (part of HTTP
invocation) but we also see how to create and resolve our own promises.

Adding Data Persistence to Personal Trainer

[222]

• Working with cross-domain access: As we are interacting with a MongoLab
server in a different domain, you learn about browser restrictions on cross-
domain access. You also learn how JSONP and CORS help us make cross-
domain access easy and about AngularJS JSONP support.

• Using the $resource service for RESTful endpoints: The $resource service
is an abstraction built over $http to support the RESTful server endpoints.
You learn about the $resource service and its usage.

• Loading and saving exercise data with $resource: We change parts of the
system to employ the $resource service to load and save exercise data.

• Request/response interceptors: You learn about interceptors and how they
are used to intercept calls in a request/response pipeline and alter the remote
invocation flow.

• Request/response transformers: Similar to interceptors, transformers
function at the message payload level. We explore the working of
transformers with examples.

Let's get the ball rolling.

AngularJS and server interactions
Any client-server interaction typically boils down to sending HTTP requests to
a server and receiving responses from a server. For heavy apps of JavaScript, we
depend on the AJAX request/response mechanism to communicate with the server.
To support AJAX-based communication, AngularJS exposes two framework services:

• $http: This is the primary component to interact with a remote server using
AJAX. We can compare it to the ajax function of jQuery as it does
something similar.

• $resource: This is an abstraction build over $http to make communication
with RESTful (http://en.wikipedia.org/wiki/Representational_
state_transfer) services easier.

Before we delve much into the preceding service we need to set up our server
platform that stores the data and allows us to manage it.

Setting up the persistence store
For data persistence, we use a document database, MongoDB (https://www.
mongodb.org/), hosted over MongoLab (https://mongolab.com/) as our data
store. The reason we zeroed in MongoLab is because it provides an interface to
interact with the database directly. This saves us the effort of setting up server
middleware to support the MongoDB interaction.

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
https://www.mongodb.org/
https://www.mongodb.org/
https://mongolab.com/

Chapter 5

[223]

It is never a good idea to expose the data store/database directly to the
client, but, in this case, since your primary aim is to learn about AngularJS
and client-server interaction, we take this liberty and will directly access
the MongoDB instance hosted in MongoLab.
There is also a new breed of apps that are built over noBackend solutions.
In such a setup, frontend developers build apps without the knowledge
of the exact backend involved. Server interaction is limited to making API
calls to the backend. If you are interested in knowing more about these
noBackend solutions, do checkout http://nobackend.org/.

Our first task is to provision an account on MongoLab and create a database:

1. Go to https://mongolab.com and sign up for a MongoLab account by
following the instructions on the website.

2. Once the account is provisioned, login and create a new Mongo database by
clicking on the Create New button in the home page.
On the database creation screen, you need to make some selection to
provision the database. See the following screenshot to select the free
database tier and other options:

http://nobackend.org/
https://mongolab.com

Adding Data Persistence to Personal Trainer

[224]

3. Create the database and make a note of the database name that you create.
4. Once the database is provisioned, open the database and add two collections

to it from the Collection tab:
 ° exercises: This stores all Personal Trainer exercises
 ° workouts: This stores all Personal Trainer workouts

Collections in the MongoDB world equate to a database table.

MongoDB belongs to a breed of databases termed document databases.
The central concepts here are documents, attributes, and their linkages.
And, unlike traditional databases, the schema is not rigid.
We will not be covering what document databases are and how to
perform data modeling for document-based stores in this book. Personal
Trainer has a limited storage requirement and we manage it using the
preceding two document collections. We may not even be using the
document database in its true sense.

5. Once the collections are added, add yourself as a user to the database from
the User tab.

6. The next step is to determine the API key for the MongoLab account.
The provisioned API key has to be appended to every request made to
MongoLab. To get the API key, perform the following steps:

1. Click on the username (not the account name) in the top-right corner
to open the user profile.

2. In the section titled API Key, the current API key is displayed;
copy it.

The datastore schema is complete; we now need to seed these collections.

Seeding the database
The Personal Trainer app already has a predefined workout and a list of 12 exercises.
We need to seed the collections with this data.

Open seed.js from chapter5/checkpoint1/app/js from the companion codebase.
It contains the seed JSON script and detailed instructions on how to seed data into
the MongoLab database instance.

Chapter 5

[225]

Once seeded, the database will have one workout in the workouts collection and 12
exercises in the exercises collection. Verify this on the MongoLab site, the collections
should show this:

Everything has been set up now, let's start our discussion with the $http service and
implement workout/exercise persistence for the Personal Trainer app.

$http service basics
The $http service is the primary service for making an AJAX request in AngularJS.
The $http service provides an API to perform all HTTP operations (actions) such as
GET, POST, PUT, DELETE, and some others.

HTTP communication is asynchronous in nature. When making HTTP requests,
a browser does not wait for the response to arrive before continuing processing.
Instead, we need to register some callback functions that are invoked in the future
when the response arrives from the server. The AngularJS Promise API helps us
streamline this asynchronous communication and we use it extensively while
working with the $http service, as you will see later in this chapter.

The basic $http syntax is:

$http(config)

The $http service takes a configuration object as a parameter and returns a promise.
The config object contains a set of properties that affect the remote request behavior.
These properties include arguments such as the HTTP action type (GET, POST,
PUT,…), the remote server URL, query string parameters, headers to send, and a
number of other such options.

The exact configuration option details are available in framework documentation
for the $http service at https://code.angularjs.org/1.3.3/docs/api/ng/
service/$http. As we work through the chapter, we will use some of these
configurations in our implementation too.

A $http invocation returns a promise object. Other than the standard Promise API
functions (such as then), this object contains two extra callback functions: success
and error, that get invoked based on whether the HTTP request was completed
successfully or not.

Adding Data Persistence to Personal Trainer

[226]

Here is a simple HTTP request using $http:

$http({method: 'GET', url: '/endpoint'}).
 success(function(data, status, headers, config) {
 // called when http call completes successfully
 }).
 error(function(error, status, headers, config) {
 // called when the http call fails.
 // The error parameter contains the failure reason.
 });

The preceding code issues an HTTP GET request to /endpoint and when the
response is available either the success or error callback is invoked.

HTTP responses in the - range 200-299 are considered successful.
Responses in the range of 40x and 50x are treated as failure and
result in the error callback function being invoked.

The callback functions (success or error) are invoked with four arguments:

• data or error: This is the response returned from the server. It can be the
data returned or an error if the request fails.

• status: This is the HTTP status code for the response.
• headers: This is used for the HTTP response headers.
• config: This is the configuration object used during the original $http

invocation.

The $http(config) syntax for making an AJAX request is very uncommon. The
service has a number of shortcut methods to make a specific type of HTTP request.
These include:

• $http.get(url, [config])

• $http.post(url, data, [config])

• $http.put(url, data,[config])

• $http.delete(url, [config])

• $http.head(url,[config])

• $http.jsonp(url, [config])

All these function take the same (optional) config object as the last parameter.

Chapter 5

[227]

An interesting thing about the standard $http configuration is that these settings
make JSON data handling easy. The end effect of this is:

• For standard GET operations, if the response is JSON, the framework
automatically parses the JSON string and converts it into a JavaScript object.
The end result is that the first argument of the success callback function
(data) contains a JavaScript object, not a string value.

• For POST and PUT, objects are automatically serialized and the corresponding
content type header is set (Content-Type: application/json) before the
request is made.

Does that mean that $http cannot handle other formats? That is far from true. The
$http service is the generic AJAX service exposed by the Angular framework and
can handle any format of request/response. Every AJAX request that happens
in AngularJS is done by the $http service directly or indirectly. For example, the
remote views that we load for the ng-view or ng-include directives use the $http
service under the hood.

Checkout the jsFiddle web page at http://jsfiddle.net/cmyworld/
doLhmgL6/ where we use the $http service to post data to a server in
a more traditional format that is associated with the standard post form.
('Content-Type': 'application/x-www-form-urlencoded').

It is just that Angular makes it easy to work with JSON data, helping us to avoid
writing boilerplate serialization/deserialization logic, and setting HTTP headers,
which we normally do when working with JSON data.

With this backgrounder on the $http service, we now are in a position to implement
something useful using $http. Let's add some workout persistence.

Personal Trainer and server integration
As described in the previous section, client-server interaction is all about
asynchronicity. As we alter our Personal Trainer app to load data from the server, this
pattern becomes self-evident.

In the preceding chapter, the initial set of workouts and exercises was hardcoded in
the WorkoutService implementation itself. Let's see how to load this data from the
server first.

http://jsfiddle.net/cmyworld/doLhmgL6/
http://jsfiddle.net/cmyworld/doLhmgL6/

Adding Data Persistence to Personal Trainer

[228]

Loading exercise and workout data
Earlier in this chapter, we seeded our database with a data form, the seed.js file.
We now need to render this data in our views. The MongoLab REST API is going to
help us here.

The MongoLab REST API uses an API key to authenticate access
request. Every request made to the MongoLab endpoints needs to have
a query string parameter apikey=<key> where key is the API key
that we provisioned earlier in the chapter. Remember, the key is always
provided to a user and associated with his/her account. Avoid sharing
your API keys with others.

The API follows a predictable pattern to query and update data. For any MongoDB
collection, the typical endpoint access pattern is one of the following (given here is
the base URL: https://api.mongolab.com/api/1/databases):

• /<dbname>/collections/<name>?apiKey=<key>. This has the
following requests:

 ° GET: This action gets all objects in the given collection name.
 ° POST: This action adds a new object to the collection name. MongoLab

has an _id property that uniquely identifies the document (object). If
not provided in the posted data, it is autogenerated.

• /<dbname>/collections/<name>/<id>?apiKey=<key>. This has the
following requests:

 ° GET: This gets a specific document/collection item with a specific ID
(a match done on the _id property) from the collection name

 ° PUT: This updates the specific item (id) in the collection name
 ° DELETE: This deletes the item with a specific ID from the collection

name

For more details on the REST API interface, visit the MongoLab
REST API documentation at http://docs.mongolab.com/
restapi/#insert-multidocuments.

Now, we are in a position to start implementing exercise/workout list pages.

https://api.mongolab.com/api/1/databases

Chapter 5

[229]

Before we start, please download the working copy of Personal Trainer
from chapter4/checkpoint7. It contains the complete implementation
for Personal Trainer including exercise building, which was left as a Do-it-
yourself (DIY) assignment for everyone to try.
The code is also available on GitHub (https://github.com/
chandermani/angularjsbyexample) for everyone to download.
Checkpoints are implemented as branches in GitHub.
The branch to download is as follows:
GitHub branch: checkpoint4.7 (folder – trainer)

Loading exercise and workout lists from a server
To pull exercise and workout lists from the MongoLab database, we have to rewrite
our WorkoutService service methods, getExercises and getWorkouts.

Open services.js from app/js/shared and change the getExercises function
to this:

service.getExercises = function () {
 var collectionsUrl = "https://api.mongolab.com/api/1/
databases/<dbname>/collections";
 return $http.get(collectionsUrl + "/exercises", {
 params: { apiKey: '<key>'}
 });
};

Replace the tokens: <dbname> and <key> with the DB name and API key of the
database that we provisioned earlier in the chapter.

Also remember to add the $http dependency in the WorkoutService declaration.

The new function created here just builds the MongoLab URL and then calls the
$http.get function to get the list of exercises. The first parameter we have is the
URL to connect to and the second parameter is the config object.

The params property of the config object allows us to add query string parameters
to the URL. We add the API key (?apiKey=98dkdd) as a query string for API access.

Now that the getExercises function is updated, and the new implementation
returns a promise, we need to fix the upstream callers.

https://github.com/chandermani/angularjsbyexample
https://github.com/chandermani/angularjsbyexample

Adding Data Persistence to Personal Trainer

[230]

Open exercise.js placed under WorkoutBuilder and fix the
ExerciseListController by replacing the existing init function implementation
(the code inside init) with these lines:

WorkoutService.getExercises().success(function (data) {
 $scope.exercises = data;
});

We use the HTTP promise success callback to bind the exercises list in a controller.
We can clearly observe the asynchronous behavior of $http and the promise-based
callback in action as we set the exercises data after receiving a server response in a
callback function.

Go ahead and load the exercise list page (#/builder/exercises) and make sure the
exercise list is loading from the server. The browser network logs should log requests
such as this:

Exercises are loading fine, but what about workouts? The workout list page can also
be fixed on similar lines.

Update the getWorkouts function of WorkoutService to load data from the
server. The getWorkouts implementation is similar to getExercises except
that the collection name now becomes workouts. Then fix the init function of
WorkoutListController along the same lines as the preceding init function and
we are done.

That was easy! We can fix all other get scenarios in a similar manner. But before we
do that, there is still scope to improve our implementation.

The first problem with getExercises/getWorkouts is that the DB name and API
key are hardcoded and will cause maintenance issues in the future. The best way is
to inject these values into WorkoutService through some kind of mechanism.

With our past experience and learnings, we know that, if we implement this service
using provider, we can pass configuration data required to set up the service at the
configuration stage of app bootstrapping. This allows us to configure the service
before use. Time to put this theory to practice!

Chapter 5

[231]

Implementing the WorkoutService provider
Implementing WorkoutService as a provider will help us to configure the database
name and API key for the service at the configuration stage.

Copy and replace the updated WorkoutService definition from the services.js
file in chapter5/checkpoint1/app/js/shared. The service has now been converted
into a provider implementation.

The service has a configure method that sets up the database name, the API key,
and the collection URL address, as given here:

this.configure = function (dbName, key) {
database = database;
 apiKey = key;
 collectionsUrl = apiUrl + dbName + "/collections";
}

The functions: setupInitialExercises, setupInitialWorkouts, and init have
also been removed as the data will now come from the MongoLab server.

The implementation of the getExercise and getWorkouts functions has been
updated to use the configured parameters:

service.getExercises = function () {
 return $http.get(collectionsUrl + "/exercises",
 { params: { apiKey: apiKey } });
};

And finally, the service object creation has been moved into the $get function of
the provider. $get is the factory function responsible for creating the actual service.

Let's update the config function of the app module and inject the MongoLab
configuration into WorkoutService (using WorkoutServiceProvider).

Open the app.js file, inject the new provider dependency
WorkoutServiceProvider with the other provider dependencies, and call its
configure method with your database name and API key:

WorkoutServiceProvider.configure("<mydb>", "<mykey>");

We now have a better WorkoutService implementation as it allows the calling code
to configure the service before use.

Adding Data Persistence to Personal Trainer

[232]

The provider implementation may look overtly complex as this could be achieved by
creating a constant service like this:

angular.module('app').constant('dbConfig', {
 database: "<dbname>",
 apiKey: "<apikey>"
});

And then inject the implementation into the existing WorkoutService
implementation.

The advantage of the provider approach is that the configuration data is not globally
exposed. Had we used a constant service such as dbConfig, any other service/
controller could have got hold of the database name and API key by injecting the
dbConfig service, which would be less than desirable.

The preceding provider refactoring is still not complete and we can verify
this by refreshing the workout list page. There will be an unknown provider
WorkoutServiceProvider error in the browser developer console.

We have just hit a bug with Angular that causes the config function module to
execute before provider registration. This happened because the script registration
for app.js precedes the service.js registration in index.html.

There is already a bug (https://github.com/angular/angular.js/issues/7139)
logged against this issue and the current workaround is to call the config function at
the end, after all provider/service registrations. This requires us to move the config
function implementation to a new file.

There was this issue while writing this chapter. The newer
versions of Angular 1.3 and above have fixed this issue. We will
still continue with the approach outline given next as it works
irrespective of the version of Angular.

Copy the updated app.js and config.js (new file) files from chapter5/
checkpoint1 and update your local copy. Once copied, update the configure
function of WorkoutServiceProvider in the config.js file with your database
name and API key. And finally, add a reference to config.js in the script
declaration section of index.html at the end.

Refresh the workout/exercise list page and the workout and exercise data is loaded
from the database server.

https://github.com/angular/angular.js/issues/7139

Chapter 5

[233]

Look at the complete implementation in chapter5/checkpoint1 if you
are having difficulty in retrieving/showing data.
Also remember to replace the database name and API key before running
the code from checkpoint1.
GitHub branch: checkpoint5.1 (folder: trainer)

This looks good and the lists are loading fine. Well, almost! There is a small glitch
in the workout list page. We can easily spot it if we look carefully at any list item (in
fact there is only one item):

The workout duration calculations are not working anymore! What could be the
reason? We need to look back on how these calculations were implemented. The
WorkoutPlan service (in model.js) defines a function totalWorkoutDuration that
does the math for this.

The difference is in terms of the workout array that is bound to the view. In the
previous chapter, we created the array with model objects that were created using
the WorkoutPlan service. But now, since we are retrieving data from the server, we
bind a simple array of JavaScript objects to the view, which for obvious reasons has
no calculation logic.

We can fix this problem by mapping a server response into our model class objects
and returning that to any upstream caller.

Mapping server data to application models
Mapping server data to our model and vice versa may be unnecessary if the model
and server storage definition match. If we look at the Exercise model class and
the seed data that we have added for the exercise in MongoLab, they do match and
hence mapping becomes unnecessary.

Adding Data Persistence to Personal Trainer

[234]

Mapping server response to model data becomes imperative if:

• Our model defines any functions
• A stored model stored is different from its representation in code
• The same model class is used to represent data from different sources (this

can happen for mashups where we pull data from disparate sources)

WorkoutPlan is a prime example of an impedance mismatch between a model
representation and its storage. Look at the following screenshot to understand
these differences:

The two major differences between a model and server data are as follows:

• The model defines the totalWorkoutDuration function.
• The exercises array representation also differs. The exercises array of

a model contains the Exercise object (the details property) whereas the
server data stores just the exercise identifier or name.

This clearly means loading and saving a workout requires model mapping. And for
consistency, we plan to map data for both the exercise and the workout.

Chapter 5

[235]

Change the getExercises implementation in WorkoutService to this:

service.getExercises = function () {
 return $http.get(collectionsUrl + "/exercises", {
 params: { apiKey: apiKey}
 }).then(function (response) {
 return response.data.map(function (exercise) {
 return new Exercise(exercise);
 })});
};

And since the return value for the getExercises function now is not a promise
object returned by $http (see the following discussion) but a standard promise,
we need to use the then function instead of the success function wherever we are
calling getExercises.

Change the init implementation in both ExercisesNavController and
ExerciseListController to this:

var init = function () {
WorkoutService.getExercises().then(function (data) {
 $scope.exercises = data;
});
};

Look back at the highlighted code for the updated getExercises implementation.
There are a number of interesting things going on here that you should understand:

• Firstly, inside the then success callback function (the first parameter), we call
the Array.map function to map the list of exercises received from a server
to the Exercise object array. The Array.map function is generally used to
map from one array to another array. Check out the MDN documentation
for the Array.map (https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/Array/map) function to know
more about how it works.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map

Adding Data Persistence to Personal Trainer

[236]

• Secondly, this is a good example of promise chaining in action. The $http.
get function returns the first promise; we attach a then callback to it that
itself returns a promise that is finally returned to the calling code. We can
visualize this with the help of the following diagram:

In future, when the first $http.get promise is resolved, the then callback is
invoked with the exercise list from the server. The then callback processes
the response and returns a new array of the Exercise objects. This return
value feeds into the promise resolution for the next callback in the line
defined in ExerciseListController.

The promise returned by then is resolved by the return value of
its success and error callback function.

The then function of ExercisesController finally assigns the Exercise
objects received to the exercises variable. The promise resolution data has
been highlighted in the preceding diagram above the dotted arrows.
Promise chaining acts like a pipeline for response flow; this is a very
powerful pattern and can be used to do some nifty stuff as we have
previously done.

• Lastly, we are using the promise function then instead of the $http.get
success callback due to a subtle difference between what success and
then returns. The success function returns the original promise (in this
case, a promise is created on calling $http.get) whereas then returns a new
promise that is resolved with the return value of the success or error functions
that we attach to then.

Chapter 5

[237]

Since we are using then instead of success, the callback function
receives a single object with all four properties config, data,
header, and status.

Before we continue any further, let's learn a bit more about promise chaining with
some simpler examples. It's a very useful and powerful concept.

Understanding promise chaining
Promise chaining is about feeding the result of one promise resolution into another
promise. Since promises wrap asynchronous operations, this chaining allows us to
organize asynchronous code in a chained manner instead of nested callbacks. We
saw an example of promise chaining earlier. The exercises were retrieved (the first
asynchronous operation), transformed (the second asynchronous operation), and
finally bound to the view (the third asynchronous operation), all using promise
chaining. The previous diagram also highlights this.

Such chaining allows us to create chains of any length as long as the methods
involved in the chain return a promise. In this case, both the $http.get and then
functions return a promise.

Let's look at a much simpler example of chaining in action. The code for this example
is as follows:

var promise = $q.when(1);
var result = promise
.then(function (i) { return i + 1;})
 .then(function (i) { return i + 1;})
 .then(function (i) { return i + 1;});
 .then(function (i) { console.log("Value of i:" + i);});

I have created a jsFiddle (http://jsfiddle.net/
cmyworld/9ak1gahe/) too to demonstrate the working of
promise chaining.

The preceding code uses promise chaining, and every chained function increments
the value passed to it and passes it along to the next promise in the chain. The final
value of i in the last then function is 4.

The $q.when function returns a promise that resolves to a
value 1.

http://jsfiddle.net/cmyworld/9ak1gahe/
http://jsfiddle.net/cmyworld/9ak1gahe/

Adding Data Persistence to Personal Trainer

[238]

As described earlier, such chaining is possible due to the fact that the then function
itself returns a promise. This promise is resolved to the return value of either the
success or error callback. Look at the preceding code; there is a return statement in
every success callback (except the last).

The behavior of promise chaining when it comes to the error callback may surprise
us. An example will be the best way to illustrate that too. Consider this code:

var errorPromise = $q.reject("error");

var resultError = errorPromise.then(function (data) {
 return "success";
}, function (e) {
 return "error";
});
resultError.then(function (data) {
 console.log("In success with data:" + data);
}, function (e) {
 console.log("In error with error:" + e);
});

The $q.reject function creates a promise that is rejected with the value as
error. Hence, the resultError promise is resolved with the return value
error (return error).

The question now is, "What should the resultError.then callback print?" Well, it
prints In success with data: error, since the success callback is invoked not error.
This happened because we used a standard return call in both the success and
error callbacks for errorPromise.then (or resultError).

If we want the promise chain to fail all along, we need to reject the promise in every
error callback. Change the resultError promise to this:

var resultError = errorPromise.then(function (data) {
 return "success";
}, function (e) {
 return $q.reject(e);
});

The correct error callback in the next chained then is called, and the console logs In
error with error: error.

By returning $q.reject(e) in the error callback, the resolved value of the
resultError promise will be a rejected promise ($q.reject returns a promise that
is always rejected).

Chapter 5

[239]

Promise chaining is a very powerful concept, and mastering it will help us write
more compact and well organized code. We will be extensively using promise
chaining throughout this chapter to handle server response and to transform and
load data.

Let's get back to where we left off, loading exercise and workout data from
the server.

Loading exercise and workout data from the server
As we fixed the getExercises implementation in WorkoutService earlier, we
can implement other get operations for exercise- and workout-related stuff. Copy
the service implementation for the getExercise, getWorkouts, and getWorkout
functions of WorkoutService from chapter3/checkpoint2/app/js/shared/
services.js.

The getWorkout and getExercise functions use the name of the
workout/exercise to retrieve results. Every MongoLab collection
item has an _id property that uniquely identifies the item/entity.
In the case of our Exercise and WorkoutPlan object, we use the
name of the exercise for unique identification, and hence the name
and _id property always match.

Pay special attention to implementation for both the getWorkouts and getWorkout
functions because there is a decent amount of data transformation happening in both
the functions due to the model and data storage format mismatch.

The getWorkouts function is similar to getExercises except it creates the
WorkoutPlan object and the exercises array is not mapped to the list of class
objects of Exercises, instead server structure of {name:'name', duration:value}
is used as it is.

The getWorkout function implementation involves a good amount of data mapping.
This is how the getWorkout function now looks:

service.getWorkout = function (name) {
 return $q.all([service.getExercises(), $http.get(collectionsUrl
 + "/workouts/" + name, { params: { apiKey: apiKey } })])
 .then(function (response) {
 var allExercises = response[0];
 var workout = new WorkoutPlan(response[1].data);
 angular.forEach(response[1].data.exercises,
 function (exercise) {
 exercise.details = allExercises.filter(function (e) {

Adding Data Persistence to Personal Trainer

[240]

 return e.name === exercise.name; })[0];
 });
 return workout;
 });
};

There is a lot happening inside getWorkout that we need to understand.

The getWorkout function starts the execution by calling the $q.all function. This
function is used to wait over multiple promise calls. It takes an array of promises and
returns a promise. This aggregate promise is resolved or rejected (an error) when
all promises within the array are either resolved or at least one of the promises is
rejected. In the preceding case, we pass an array with two promises: the first is the
promise returned by the service.getExercises function and the second is the
http.get call (to get the workout with a specific identifier).

The $q.all function callback parameter response is also an array corresponding to
the resolved values of the input promise array. In our case, response[0] contains
the list of exercises and response[1] contains workout collection responses received
from the server (response[1].data contains the data part of the HTTP response).

Once we have the workout details and the complete list of exercises, the code just
after this updates the exercises array of the workout to the correct Exercise class
object. It does this by searching the allExercises array for the name of the exercise
as available in the workout.exercises array item returned from the server. The
end result is that we have a complete WorkoutPlan object with the exercises array
setup correctly.

These WorkoutService changes warrant fixes in upstream callers too. We have
already fixed both ExercisesNavController and ExerciseListController.
Fix the WorkoutListController object along similar lines. The getWorkout and
getExercise functions are not directly used by the controller but by our builder
services. Let's now fix the builder services together with the workout/exercise
detail pages.

Fixing workout and exercise detail pages
We fix the workout detail page and I will leave it to you to fix the exercise detail page
yourself as it follows a similar pattern.

ExeriseNavController, used in the workout detail page navigation rendering, is
already fixed so let's jump onto fixing WorkoutDetailsController.

Chapter 5

[241]

WorkoutDetailController does not load workout details directly but is dependent
on the resolve route (see route configuration in config.js) invocation; when
the route changes, this injects the selected workout (selectedWorkout) into the
controller. The resolve selectedWorkout function in turn is dependent upon
WorkoutBuilderService to load the workout, new or existing. Therefore the first fix
should be WorkoutBuilderService.

The function that pulls workout details is startBuilding. Update the
startBuilding implementation to the following code:

service.startBuilding = function (name) {
 var defer = $q.defer();
 if (name) {
 WorkoutService.getWorkout(name).then(function (workout) {
 buildingWorkout = workout;
 newWorkout = false;
 defer.resolve(buildingWorkout);
 });
 } else {
 buildingWorkout = new WorkoutPlan({});
 defer.resolve(buildingWorkout);
 newWorkout = true;
 }
 return defer.promise;
};

In the preceding implementation, we use the $q service of the Promise API to create
and resolve our own promise. The preceding scenario required us to create our own
promise because creating new workouts and returning is a synchronous process,
whereas loading the existing workout is not. To make the return value consistent, we
return promises in both the new workout and edit workout cases.

To test the implementation, just load any existing workout detail page such as
7minWorkout under #/builder/workouts/. The workout data should load with
some delay.

This is the first time we are actually creating our own promise and hence it's a good
time to delve deeper into this topic.

Adding Data Persistence to Personal Trainer

[242]

Creating and resolving custom promises
Creating and resolving a standard promise involves the following steps:

1. Create a new defer object by calling the $q.defer() API function. The
defer object is like an (conceptually) action that will complete some time in
the future.

2. Return the promise object by calling defer.promise at the end of the
function call.

3. Any time in the future, use a defer.resolve(data) function to resolve the
promise with a specific data or defer.reject(error) object to reject the
promise with the specific error function. The resolve and reject functions
are part of the defer API. The resolve function implies work is complete
whereas reject means there is an error.

The preceding startBuilding function follows the same pattern.

An interesting thing about the preceding startBuilding implementation is that,
in the case of the else condition, we immediately resolve the promise by calling
defer.resolve with a new workout object instance, even before we have returned
a promise to the caller. The end result is that, in the case of a new workout, the
promise is immediately resolved once the startBuilding function completes.

The ability to create and resolve our own custom promise is a powerful feature.
Such an ability is very useful in scenarios that involve invocation and coordination
of one or more asynchronous methods before a result can be delivered. Consider a
hypothetical example of a service function that gets product quotes from multiple
e-commerce platforms:

getProductPriceQuotes(productCode) {
 var defer = $q.defer()
 var promiseA = getQuotesAmazon(productCode);
 var promiseB = getQuotesBestBuy(productCode);
 var promiseE = getQuotesEbay(productCode);
 $q.all([promiseA, promiseB, promiseE])
 .then(function (response) {
 defer.resolve([buildModel(response[0]),
 buildModel(response[1]), buildModel(response[2])]);
 });
 defer.promise;
}

Chapter 5

[243]

The getProductPriceQuotes service function needs to make asynchronous requests
to multiple e-commerce sites, collate the date received, and return the data to the
user. Such a coordinated effort can be managed by the Promise/defer API. In the
preceding sample, we use the $q.all function that can wait on multiple promises
to get resolved. Once all the remote calls are complete, the then success callback is
invoked. The hypothetical buildModel function is used to build a common Quote
model as the response can vary from one e-commerce platform to another. The
defer.resolve function finally collates the new model data and returns it in an
array. A well-coordinated effort!

When it comes to creating and using the defer/Promise API there are some rules/
guidance that come in handy. These include:

• A promise once resolved cannot be changed. A promise is like a return
statement that gets called in the future. But once a promise is resolved, the
value cannot change.

• We can call then of the exiting promise object any number of times,
irrespective of whether the promise has been resolved or not.

• Calling then on the existing resolved/rejected promise invokes the then
callback immediately.

Other than creating our own promise and resolving it, there is another way to
achieve the same behavior. We can use another Promise API function: $q.when.

The $q "when" function
We will be super greedy and try to shave some more lines from the startBuilding
implementation by using the $q.when function. Creating custom promising just to
support a uniform return type (a promise) maybe an overkill here. The $q.when
function exists for this very purpose.

The when function takes an argument and returns a promise:

when(value);

The value can be a normal JavaScript object or a promise. The promise returned by
when is resolved with the value if it is a simple JavaScript type or with the resolved
promise value if value is a promise. Let's see how to use when in startBuilding.

Replace the existing startBuilding implementation with this one:

service.startBuilding = function (name) {
 if (name) {
 return WorkoutService.getWorkout(name)
 .then(function (workout) {

Adding Data Persistence to Personal Trainer

[244]

 buildingWorkout = workout;
 newWorkout = false;
 return buildingWorkout;
 });
 } else {
 buildingWorkout = new WorkoutPlan({});
 newWorkout = true;
 return $q.when(buildingWorkout);
 }
};

The changed code has been highlighted in the preceding code. And it is the else
condition where we use $q.when to return a new WorkoutPlan object, through
a promise.

We have reduced some lines of code from startBuilding and it still works fine. We
now also have an understanding of $q.when and where can it be used. It's time to
complete the workout detail page fixes.

Fixing workout and exercise detail pages
continued…
Fixing startBuilding is enough to make the workout detail page load data. We
can verify this and make sure the new workout and existing workout scenarios are
loading data correctly.

We do not need to write a callback implementation in our
WorkoutDetailController. Why? Because the route resolve configuration takes
care of it. We touched upon the resolve route in the last chapter when we used it
to inject the selectedWorkout object into WorkoutDetailController. Let's try to
understand how this refactoring for asynchronous calls and promise implementation
has affected the resolve function.

Route resolutions and promises
If we look at the new $routeProvider.when configurations for the Workout Builder
page (in the edit case), the selectedWorkout function of resolve has just one
line now:

return WorkoutBuilderService.startBuilding(
 $route.current.params.id);

Chapter 5

[245]

As you learned in the previous chapter, the resolve configuration is used to inject
dependencies into a controller before it is instantiated. In the preceding case, the
return value now is a promise object, not a fully constructed WorkoutPlan object.

When a return value of a resolve function is promise, Angular routing infrastructure
waits for this promise to resolve, before loading the corresponding route. Once the
promise is resolved, the resolved data is injected into the controller as it happens
with standard return values. In our implementation too, the selected workout is
injected automatically into the WorkoutDetailController once the promise is
resolved. We can verify this by double-clicking on the workout name tile on the list
page; there is a visible delay before the Workout Builder page is loaded.

The clear advantage with the $routeProvider.when resolve property is that we do
not have to write asynchronous (then) callbacks in the controller as we did to load
the workout list in WorkoutListController.

The exercise detail page too needs fixing, but since the implementation that we
have shared does not use resolve for the exercise detail page, we will have to
implement the promise-based callback pattern to load the exercise in the init
controller function. The checkpoint2 folder under chapter5 contains the fixes
ExerciseBuilderService and ExerciseDetailController that you can copy to
load exercise details, or you can do it yourself and compare the implementation.

The checkpoint2 folder under chapter5 contains the working
implementation for what we have covered thus far.
GitHub Branch: checkpoint5.2 (folder: trainer)

It is now time to fix, create, and update scenarios for the exercises and workouts.

Performing CRUD on exercises/workouts
When it comes to the create, read, update, and delete (CRUD) operations, all save,
update, and delete functions need to be converted to the callback promise pattern.

Earlier in the chapter we detailed the endpoint access pattern for CRUD operations
in a MongoLab collection. Head back to that section and revisit the access patterns.
We need it now as we plan to create/update workouts.

Adding Data Persistence to Personal Trainer

[246]

Before we start the implementation, it is important to understand how MongoLab
identified a collection item and what our ID generation strategy is . Each collection
item in MongoDB is uniquely identified in the collection using the _id property.
While creating a new item, either we supply an ID or the server generates one itself.
Once _id is set, it cannot be changed. For our model, we will use the name property
of the exercise/workout as the unique ID and copy the name into the _id field
(hence, there is no autogeneration of _id). Also, remember our model classes do not
contain this _id field, it has to be created before saving the record for the first time.

Let's fix the workout creation scenario first.

Fixing and creating a new workout
Taking the bottom-up approach, the first thing that needs to be fixed is
WorkoutService. Update the addWorkout function as shown in the following code:

service.addWorkout = function (workout) {
 if (workout.name) {
 var workoutToSave = angular.copy(workout);
 workoutToSave.exercises =
 workoutToSave.exercises.map(function (exercise) {
 return {
 name: exercise.details.name,
 duration: exercise.duration
 }
 });
 workoutToSave._id = workoutToSave.name;
 return $http.post(collectionsUrl + "/workouts", workoutToSave,
 { params: { apiKey: apiKey }})
 .then(function (response) { return workout });
}}

In getWorkout, we had to map data from the server model to our client model; the
reverse has to be done here. Since we do not want to alter the model that is bound to
the view, the first thing we do is make a copy of the workout.

Next, we map the exercises array (workoutToSave.exercises) to a format that
is more compact for server storage. We only want to store the exercise name and
duration in the exercises array on the server.

Chapter 5

[247]

We then set the _id property as the name of the workout to uniquely identify it in
the database of the Workouts collection.

A word of caution
The simplistic approach of using the name of the workout/exercise as
a record identifier (or id) in MongoDB will break for any decent-sized
app. Remember that we are creating a web-based application that can
be simultaneously accessed by many users. Since there is always the
possibility of two users coming up with the same name for a workout/
exercise, we need a strong mechanism to make sure names are not
duplicated.
Another problem with the MongoLab REST API is that, if there is a
duplicate POST request with the same id field, one will create a new
document and the second will update it, instead of the second failing.
This implies that any duplicate checks on the id field on the client side
still cannot safeguard against data loss. In such a scenario, assigning
autogeneration of the id value is preferable.

Lastly, we call the post function of the $http API, passing in the URL to connect to,
data to send, and extra query string parameter (apiKey). The last return statement
may look familiar as we again perform promise chaining to return the workout object
as part of the promise resolution.

In standard create entity cases, unique ID generation is done on the
server (mostly by the database). The response to the create entity then
contains the generated ID. In such a case, we need to update the model
object before we return data to the calling code.

Why not try to implement the update operation? The updateWorkout function can
be fixed in the same manner, the only difference being that the $http.put function
is required:

return $http.put(collectionsUrl + "/workouts/" + workout.name,
 workoutToSave, { params: { apiKey: apiKey } });

The preceding request URL now contains an extra fragment (workout.name) that
denotes the identifier of the collection item that needs to be updated.

Adding Data Persistence to Personal Trainer

[248]

The MongoLab PUT API request creates the document passed in as
the request body, if not found in the collection. While making the
PUTrequest, make sure that the original record exists. We can do this by
making a GET request for the same document first, and confirm that we
get a document before updating it.

The last operation that needs to be fixed is deleting the workout. Here is a trivial
implementation where we call the $http.delete API to delete the workout
referenced by a specific URL:

service.deleteWorkout = function (workoutName) {
 return $http.delete(collectionsUrl + "/workouts/" +
 workoutName, { params: { apiKey: apiKey } });
};

With that it's time now to fix WorkoutBuilderService and
WorkoutDetailController. The save function of WorkoutBuilderService now
looks like this:

service.save = function () {
 var promise = newWorkout ?
 WorkoutService.addWorkout(buildingWorkout) :
 WorkoutService.updateWorkout(buildingWorkout);
 promise.then(function (workout) {
 newWorkout = false;
 });
 return promise;
};

Most of it looks the same as it was earlier except that newWorkout is flipped in the
then success callback and this returns a promise.

Finally, WorkoutDetailController also needs to use the same callback pattern for
handling save and delete, as shown here:

$scope.save = function () {
 $scope.submitted = true; // Will force validations
 if ($scope.formWorkout.$invalid) return;
 WorkoutBuilderService.save().then(function (workout) {
 $scope.workout = workout;
 $scope.formWorkout.$setPristine();
 $scope.submitted = false;
 });
}
service.delete = function () {

Chapter 5

[249]

 if (newWorkout) return; // A new workout cannot be deleted.
 return WorkoutService.deleteWorkout(buildingWorkout.name);
}

And that's it. We can now create new workouts, update existing workouts, and
delete them too. That was not too difficult!

Let's try it out; open the new Workout Builder page, create a workout, and save it.
Also try to edit an existing workout. Both scenarios should work seamlessly.

Check chapter5/checkpoint3 for an up-to-date implementation if
you are having issues running your local copy.
GitHub branch: checkpoint5.3 (folder – trainer)

There is something interesting happening on the network side while we make POST
and PUT requests to save data. Open the browsers network log console (F12) and see
requests being made. The log looks something like this:

There is an OPTIONS request made to the same endpoint before the actual POST is
done. The behavior that we witness here is termed as a prefight request. And this
happens because we are making a cross-domain request to api.mongolab.com.

It is important to understand the cross-domain behavior of the HTTP request and the
constructs AngularJS provides to make cross-domain requests.

Cross-domain access and AngularJS
Cross-domain requests are requests made for resources in a different domain. Such
requests when originated from JavaScript have some restrictions imposed by the
browser; these are termed as same-origin policy restrictions. This restriction stops the
browser from making AJAX requests to domains that are different from the script's
original source. The source match is done strictly based on a combination of protocol,
host, and port.

For our own app, the calls to https://api.mongolab.com are cross-domain
invocations as our source code hosting is in a different domain (most probably
something like http://localhost/....).

Adding Data Persistence to Personal Trainer

[250]

There are some workarounds and some standards that help relax/control cross-
domain access. We will be exploring two of these techniques as they are the most
commonly used ones. These are as follows:

• JSON with Padding (JSONP)
• Cross-origin resource sharing (CORS)

A common way to circumvent this same-origin policy is to use the JSONP technique.

Using JSONP to make cross-domain requests
The JSONP mechanism of remote invocation relies on the fact that browsers can
execute JavaScript files from any domain irrespective of the source of origin, as long
as the script is included via the <script> tag. In fact, a number of framework files
that we are loading in Personal Trainer come from a CDN source (ajax.googleapis.
com) and are referenced using the script tag.

In JSONP, instead of making a direct request to a server, a dynamic script tag is
generated with the src attribute set to the server endpoint that needs to be invoked.
This script tag, when appended to the browser's DOM, causes a request to be made
to the target server.

The server then needs to send a response in a specific format wrapping the response
content inside a function invocation code (this extra padding around response data
gives this technique the name JSONP).

The $http.jsonp function of AngularJS hides this complexity and provides an easy
API to make JSONP requests. The jsFiddle link at http://jsfiddle.net/cmyworld/
v9y4uby2/ highlights how JSONP requests are made. jsFiddle uses the Yahoo Stock
API to get quotes for any stock symbol.

The getQuote method in the fiddle looks like this:

$scope.getQuote = function () {
 var url =
 "https://query.yahooapis.com/v1/public/yql?q=
 select%20*%20from%20yahoo.finance.
 quote%20where%20symbol%20in%20(%22" + $scope.symbol +
 "%22)&format=json&env=store%3A%2F%2Fdatatables.
 org%2Falltableswithkeys&callback=JSON_CALLBACK";

$http.jsonp(url).success(function (data) {
 $scope.quote = data;
});
};

http://jsfiddle.net/cmyworld/v9y4uby2/
http://jsfiddle.net/cmyworld/v9y4uby2/

Chapter 5

[251]

To make a JSONP request using AngularJS, the jsonp function requires us to
augment the original URL with an extra query string parameter callback=JSON_
CALLBACK verbatim. Internally, the jsonp function generates a dynamic script tag
and a function. It then substitutes the JSON_CALLBACK token with the function name
generated and makes the remote request.

Open the preceding jsFiddle page and enter symbols such as GOOG, MSFT, or YHOO
to see the stock quote service in action. The browser network log for requests looks
like this:

https://query.yahooapis.com/... &callback=angular.callbacks._1

Here, angular.callbacks._1 is the dynamically generated function. And the
response looks like this:

angular.callbacks._1({"query": …});

The response is wrapped in the callback function. Angular parses and evaluates this
response, which results in the invocation of the angular.callbacks._1 callback
function. Then, this function internally routes the data to our success function
callback.

Hope this explains how JSONP works and what the underlying mechanism of a
JSONP request is. But JSONP has its limitations, as given here:

• Firstly, we can only make GET requests (which is obvious as these requests
originate due to script tags)

• Secondly, the server also needs to implement part of the solution that
involved wrapping the response in a function callback as seen before

• Then there is always a security risk involved as JSONP depends upon
dynamic script generation and injection

• Error handling too is not reliable because it is not easy to determine whether
a script load failed due to some reason

At the end, we must realize JSONP is more of a workaround that a solution. As we
moved towards Web 2.0, where mashups became commonplace and more and more
service providers decided to expose their API over the Web, a far better solution/
standard emerged: CORS.

Adding Data Persistence to Personal Trainer

[252]

Cross-origin resource sharing
Cross-origin resource sharing (CORS) provides a mechanism for the web server to
support cross-site access control, allowing browsers to make cross-domain requests
from scripts. With this standard, the consumer application (such as Personal Trainer)
is allowed to make some types of requests termed as simple requests without any
special setup requirements. These simple requests are limited to GET, POST (with
specific MIME types), and HEAD. All other types of requests are termed as complex
requests.

For complex requests, CORS mandates that the request should be preceded with a
HTTP OPTIONS request (also called a preflight request), that queries the server for
HTTP methods allowed for cross-domain requests. And only on successful probing
is the actual request made.

You can learn more about CORS from the MDN documentation
available at https://developer.mozilla.org/en-US/docs/
Web/HTTP/Access_control_CORS.

The best part about CORS is that the client does not have to make any adjustment as
in the case of JSONP. The complete handshake mechanism is transparent to calling
code and our AngularJS AJAX calls work without any hitch.

CORS requires configurations to be made on the server, and the MongoLab servers
have already been configured to allow cross-domain requests. The preceding POST
request to MongoLab caused the preflight OPTIONS request.

We have now covered the $http service and cross-domain invocation topics. The
next topic that needs our attention is the $resource service.

Getting started with $resource
Our discussion on the $resource service should start with understanding why we
require $resource. The $http service seems to be capable of performing all types of
server interactions. Why is this abstraction required and against what type of system
does the $resource service work?

To answer all these questions, we have to introduce a new breed of service (server
side, not Angular services): RESTful services.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

Chapter 5

[253]

RESTful API services
"There is an API for that!"

Apple did not coin this, but this indeed is a reality now. There is an API for
everything. Almost all of the public and private services (Google, Facebook, Twitter,
and so on) out there have an API. And if the API works over HTTP, there is a pretty
good chance that the API is RESTful in nature. We don't have to look far; MongoLab
too has a RESTful API interface and we have used it!

Representational State Transfer (REST) is an architectural style that defines the
components of a system as resources. Actions are defined at the resource level
and the server controls how the process flows dynamically using the concept of
hypermedia.

We will not be cover details about RESTful services here, but will
concentrate our efforts on how AngularJS helps us consume RESTful
services. If you are interested in discovering how a true RESTful service
behaves, go through this excellent InfoQ article at http://www.infoq.
com/articles/webber-rest-workflow. A fascinating read!

Most of the API interfaces that set out to be RESTful may not be a true RESTful
service but may satisfy only a few constraints of a RESTful service. The RESTful
service over HTTP has at least these common traits:

• Resources are defined using URLs. These are some of the resources:
 ° There is a collection resource with the URL format as http://

myserver.com/resources

 ° There is a collection item resource with the URL format http://
myserver.com/resources/id, where id identifies a specific resource
in the collection

• The HTTP verb GET is used to retrieve data for collection or the collection item
resource

• HTTP POST is used to create a new resource
• HTTP PUT is used to update a resource
• HTTP DELETE is used to delete a resource

http://www.infoq.com/articles/webber-rest-workflow
http://www.infoq.com/articles/webber-rest-workflow

Adding Data Persistence to Personal Trainer

[254]

Go a few sections back to the Loading exercise and workout data section and look at the
MongoLab service endpoint access patterns; they are consistent with what we have
defined earlier.

AngularJS provides the $resource service that specifically targets server
implementations that have RESTful HTTP endpoints. In coming sections, we explain
how $resource works and implement part of our Personal Trainer app using the
$resource service.

$resource basics
The $resource service is an abstraction built over the $http service, and makes
consuming RESTful services (server-based) easy. A resource in AngularJS is defined
as follows:

$resource(url, [paramDefaults], [actions]);

The parameters used are:

• url: This specifies the endpoint URL. This URL can be parameterized with
parameterized arguments prefixed with :: For example, these are valid
URLs:

 ° /collection/:identifier: This indicates a URL with a
parameterized identifier fragment

 ° /:collection/:identifier: This indicates a URL with collection
and identifier parameterized

If the parameter value is not available during invocation, the parameter is
removed from the URL. See the following examples to understand how this
URL parameterization works.

• paramDefaults: This parameter serves a dual purpose. For parameterized
URLs, paramDefaults provides a default replacement whereas any extra
values in the paramDefaults object are added to a query string.
Consider a resource url /users/:name. The following table details the
resultant URL based on the paramDefaults passed:

The paramDefaults value The Resultant URL
{} /users

{name:'david'} /users/david

{search:'david'} /users?search=david

{name:'david',
search:'out'}

/users/david?search=out

Chapter 5

[255]

As we will learn later, these parameters can be overridden during actual
action invocation.

• actions: This parameter is nothing but a JavaScript function attached to the
$resource object to perform a specific task. The $resource object comes
with a standard set of operations that are common to every resource such
as get, query, save, and delete. This actions parameter is used to extend
the default list of actions with our own custom action or alter any predefined
action.

The actions parameter takes an object hash, with the key being action
name and the value being a config object. This is the same config object that
is used with the $http service (passed in as the second parameter to $http).

Creating a resource with the preceding resource declaration statement actually
creates a Resource class. This Resource class encapsulates the configuration that we
have defined while creating it. To make HTTP requests using this class, we need to
invoke the action methods that are available on the class, including the custom ones
that we define.

Let's look at some concrete examples on how to invoke resource actions and also try
to understand a bit more about the third parameter to resource creation, actions.

Understanding $resource actions
To understand how to invoke resource actions and the role the actions parameter
plays while defining a resource, let's look at an example. Consider this resource
usage:

var Exercises = $resource('https://api.mongolab.com/
 api/1/databases/angularjsbyexample/collections/
 exercises/:param,{},{update:{action:PUT'}});

This statement creates a Resource class named Exercises with a total of six class-
level actions namely get, save, update, query, remove, and delete. Five of these
actions are standard actions defined on any resource. The sixth one, update, has
been added to this resource class by passing in the actions parameter (the third
argument). The actions parameter declaration looks like this:

actions:{action1: config, action2 : config, action3 : config}

This line defines three actions and configurations for those actions. The config object
is the same object passed as a parameter to $http.

Adding Data Persistence to Personal Trainer

[256]

In the preceding scenario, the config object passed in for the update action has only
one property action (not to be confused with $resource actions parameter), which
specifies the HTTP action verb to use on invocation of the action method: update.

For the five default actions on $resource the standard config is:

{ 'get': {method:'GET'},
 'save': {method:'POST'},
 'query': {method:'GET', isArray:true},
 'remove': {method:'DELETE'},
 'delete': {method:'DELETE'}
};

The HTTP verb on these actions makes perfect sense and complies with the RESTful
URL access pattern. The surprising part is the omission of the update action or an
action that does the HTTP PUT operation. Hence, when defining a RESTful endpoint,
we may require to augment the action list with a PUT based update action. The first
example described previously does this.

In the preceding configuration, the isArray attribute on the query action seems
interesting. To understand the behavior of isArray, we need to see how resource
actions are invoked.

$resource action invocation
The resource statement in the preceding section just creates a resource class named
Exercises. To actually invoke a server operation, we need to invoke one of the six
action methods defined in the Exercises class. Here are some sample invocations:

Exercises.query();// get all workouts
Exercises.get({id:'test'}); // get exercise with id 'test'
Exercises.save({},workout); // save the workout

For action methods based on GET, the general syntax is as follows:

Exercises.actionName([parameters],[successcallback],
 [errorcallback]);

And for POST actions (save and update), the general syntax is as follows:

Exercises.actionName([parameters], [postData], [successcallback],
[errorcallback]);

Chapter 5

[257]

For POST actions, there is an extra postData parameter to post the actual payload to
the server.

The last two parameters: successcallback and errorcallback get called when
the response is received based on the response status.

When a resource action is invoked, it returns either of these:

• A Resource class object (the resource object): This is returned when the
isArray action configuration is false, for example, the get action

• An empty array: This is returned when the isArray action configuration is
true, for example, the query action

This is in sharp contrast to the $http invocation that returns a promise.

And if we keep holding the returned value, then AngularJS fills this object or array
with the response received from a server in future. This behavior results in code that
is devoid of callback pattern implementation. For example, we can load exercises in
ExerciseListController using this statement:

$scope.exercises = Exercises.query();

The preceding query invocation immediately returns an empty array. In future,
when the response arrives, it is pushed into the array. And due to the super
awesome data-binding infrastructure that Angular has, any view bindings for the
exercises array get automatically refreshed.

Another interesting thing about the isArray action configuration is that a
misconfigured isArray attribute can cause response parsing issues. The isArray
attribute helps AngularJS decide whether to de-serialize the response as an array or
object. If configured incorrectly, Angular throws errors such as this:

"Error in resource configuration. Expected response to contain an
 object but got an array"

Alternatively, it throws errors such as this:

"Error in resource configuration. Expected response to contain an
array but got an object"

It is very easy to reproduce these errors. Let's try these calls in this way:

Exercises.get(); // Returns an array
Exercises.query({params:'plank'}); //Returns exercise object

Adding Data Persistence to Personal Trainer

[258]

The first statement in the preceding code results in the first error, and the second
statement in the second error. Look at the configurations for action methods: get and
query, to know why there were errors.

Before we move forward, there is something that needs to be reiterated. There is
a marked difference between the $resource and $http return values. The return
value of $http invocation is always a promise whereas it can be a Resource class
object or an array for $resource. Due to this reason, binding of the $resource
response is possible to view without involving callbacks.

The resource object or collection returned as part of the action invocation contains
some useful properties:

• $promise: This is the underlying promise for the request made. We can
wait over it if desired, similar to the $http promise. Else, we can use the
successcallback or errorcallback functions that we register when
invoking the resource action.

• $resolved: This is True after the preceding promise has been resolved,
false otherwise.

Let us change parts of our Personal Trainer app to use server access based on
$resource and put what we have learned into practice.

Using $resource to access exercise data
Until now, we have used $http for exercise/workout data management. To
elaborate on the $resource behavior, let's change the exercise data load and save
this to use the $resource service.

Open the services.js file and add the following lines to the WorkoutService
implementation above the service.getExercises function:

service.Exercises = $resource(collectionsUrl + "/exercises/:id",
 { apiKey: apiKey}, { update: { method: 'PUT' } });

The statement creates a Resource class configured with a specific URL and API key.
The key is passed in to the default parameter collection.

Go ahead and delete all exercise-related functions from WorkoutService.
These include the service.getExercises, service.getExercise, service.
updateExercise, service.addExercise, and service.deleteExercise functions.
Everything related to the exercise will be done using resources now.

Chapter 5

[259]

The $resource function is part of the ngResource module; therefore, we need to
include the module script in index.html. Add this line to the script section after
other AngularJS module declarations:

<script src="http://ajax.googleapis.com/ajax/libs/angularjs/
 1.3.3/angular-resource.js"></script>

Include the ngResource module dependencies in app.js, as follows:

angular.module('app', […,'ngResource']);

Finally, add $resource as a dependency to WorkoutService. Remember that the
dependency needs to be added to the this.$get function.

These changes have also affected the service.getWorkout function as it has
a dependency on the getExercises function. To fix it, replace the service.
getExercise() call inside $q.all with this:

service.Exercises.query().$promise

The query action returns an empty array that has a predefined $promise property
that $q.all can wait over.

Let's now fix the upstream caller as we have removed a number of service functions.

To start with, let's fix the exercise list implementation as it is the easiest to fix.
Open exercise.js from the WorkoutBuilder folder and fix the init method for
ExerciseNavController. Replace its implementation with this single line:

$scope.exercises = WorkoutService.Exercises.query();

Do the same with ExerciseListController, replacing the init function
implementation with the preceding code.

The empty array returned by the query action in the preceding code is filled in
the future when the response is available. Once the model exercises updates, the
bound view is automatically updated. No callback is required!

Next, we fix the exercise builder page (#/builder/exercises/new), the
corresponding ExerciseDetailController object, and downstream services. All
$http calls need to be replaced with $resource calls. Open services.js from
workoutbuilder and fix the startBuilding function in ExerciseBuilderService
in this way:

service.startBuilding = function (name) {
 if (name) {
 buildingExercise = WorkoutService.Exercises.get({ id: name },
function (data) {

Adding Data Persistence to Personal Trainer

[260]

 newExercise = false;
 });
}
 else {
 buildingExercise = new Exercise({});
 newExercise = true;
 }
 return buildingExercise;
};

We use the get action method of the Exercise resource to get the specific exercise,
passing in the name of the exercise ({id:name}). Remember, the name of the exercise
is the exercise identifier.

Before we turn the newExercise flag to false we need to wait for the response. We
make use of the success callback for that. Interestingly, the data argument to a
function and the buildingExercise variable point to the same resource object.

The else part has been reverted to the older pre-$http implementation as we do not
use promises anymore.

To fix the ExerciseDetailController implementation, we just need to revert the
init function to the non-callback pattern implementation:

$scope.exercise =
 ExerciseBuilderService.startBuilding($routeParams.id);

All the get scenarios on the exercises are fixed now. The code has indeed been
simplified. The callbacks that were with the $http implementation have been
eliminated to a large extent. The asynchronous nature of the calls is almost hidden,
which is both good and bad. It is good because it simplifies code but it is bad
because it hides the asynchronicity. This often leads to an incorrect understanding of
behavior and bugs.

The hidden cost of hiding asynchronicity
The ultimate aim of $resource is to make consumption of RESTful services easier. It
also helps reduce the callback implementation that we need to do otherwise. But this
abstraction comes at a cost. For example, consider this piece of code:

$scope.exercises = WorkoutService.Exercises.query();
console.log($scope.exercises.length);

Chapter 5

[261]

We may think console.log prints the length of the exercises array, but that is
absolutely incorrect. In fact, $scope.exercises is an empty array so log will always
show 0. The array is filled in the future with the data returned from the server. The
JavaScript engine does not wait on the first line for the response to arrive. Such code
just gives us the illusion that everything runs sequentially, but it does not.

UI data binding still works because the Angular digest cycles are executed
when the $resource service receives a response from the server.
As part of this digest cycle, dirty checks are performed to detect model
changes across the app. All these model changes trigger watches that
result in UI bindings and interpolation updates. Remember, we covered
the topic of digest cycles in Chapter 3, More AngularJS Goodness for 7
Minute Workout.

If any of our operations depend upon when the data is available, we need to
implement a callback pattern using promises. We did it with the startBuilding
function where we waited for exercise details to load before setting the
newExercise flag.

I am not advocating that you don't use $resource; in fact it is a great
service that can help eliminate a sizable amount of code otherwise
required with the $http implementation. But everyone using
$resource should be aware of the peculiarities involved.

We now need to fix CRUD operation for exercises.

Exercising CRUD with $resource
The Exercise resource defined in WorkoutService already has the save and update
(custom actions that we added) action. It's now just a matter of invoking the correct
action inside the WorkoutBuilderService functions.

The first ExerciseBuilderService function we fix is save. Update the save
implementation with the following code:

service.save = function () {
 if (!buildingExercise._id)
 buildingExercise._id = buildingExercise.name;
 var promise = newExercise ?
 WorkoutService.Exercises.save({},buildingExercise).$promise
 : buildingExercise.$update({ id: buildingExercise.name });

Adding Data Persistence to Personal Trainer

[262]

 return promise.then(function (data) {
 newExercise = false;
 return buildingExercise;
});
};

In the previous implementation based on the newExercise state, we call the
appropriate resource action. We then pull out the underlying promise and again
perform promise chaining to return the same exercise in future using then.

The save operation not only uses a Resource (Exercise) class but also a Resource
object (buildingExercise). The preceding code illustrates an important difference
between the Resource class and the resource object. Remember buildingExercise
is a resource object that we assigned during the invocation of the startBuilding
function in ExerciseDetailController.

A resource object is typically created when we invoke get operations on the
corresponding Resource class, such as this:

buildingExercise = WorkoutService.Exercises.get({ id: name });

This operation creates an exercise resource object. And the following operation
creates an array:

$scope.exercises = WorkoutService.Exercises.query();

The array is filled with exercise resource objects when the response is received.

The actions defined on a resource object are the same as the Resource class
except that all action names are prefixed with $. Also, resource object actions can
derive data from the resource object itself. For example, in the preceding code,
buildingExercise.$update does not take the payload as an argument whereas the
payload is required when using the Exercise.save action (the second argument).

Chapter 5

[263]

The following table contrasts the Resource class and resource object usage:

Resource class Resource object
Creation This is created using

$resource(url, param,
actions).

This is created as part of action execution.
Here is an example:
exercise = WorkoutService
.Exercises.get({ id: name
});

Actions
(querying)

Exercises.
get({id:name});
Exercise.query();

exercise.$get({id:name});
exercise.$query();

Actions
(CRUD)

Exercise.save({},
data);
Exercise.
update({id:name},
data);
Exercise.
delete({id:name});

exercise.$save({});
exercise.$update({id:name});
exercise.$delete({id:name});

Action
returns

This returns the Resource object
or array, with the $promise and
$resolved properties.

This returns a promise object.

Use resource objects when the operation performed is in the
context of a single item, such as update and delete operations.
Otherwise, stick to the $resource service.

Deleting is simple; we just call the $delete action on the resource object and return
the underlying promise:

service.delete = function () {
 return buildingExercise.$delete({ id: buildingExercise.name });
};

WorkoutDetailController needs no fixes as the return value for save and delete
functions on WorkoutBuilderService is still a promise.

The $resource function fixes are complete and we can now test our implementation.
Try to load and edit exercises and verify that everything looks good.

Adding Data Persistence to Personal Trainer

[264]

If you are having issues, chapter5/checkpoint4 contains the complete
working implementation.
GitHub branch: checkpoint5.4 (folder: trainer)

The $resource function is a pretty useful service from AngularJS for targeting
RESTful HTTP endpoints. But what about other endpoints that might be non-
conformant? Well, for non-RESTful endpoints, we can always use the $http service.
Still, if we want to use the $resource service for the non-RESTful resources, we need
to be aware of access pattern differences.

The $resource service with non-RESTful
endpoints
As long as the HTTP endpoint returns and consumes JSON data (or data that can be
converted to JSON), we can consume that endpoint using the $resource service. In
such cases, we may need to create multiple Resource classes to target querying and
CRUD-based operations. For example, consider these resources declarations:

$resource('/users/active'); //for querying
$resource('/users/createnew'); // for creation
$resource('/users/update/:id'); // for update

In such a case, most of the action invocation is limited to the Resource class, and
resource object-level actions may not work.

Such endpoints might not even conform to the standard HTTP action usage. An
HTTP POST request may be used for both saving and updating data. The DELETE
verb may not be supported. There might also be other similar issues.

That sums up all that we plan to discuss on $resource. Let's end our discussion by
summarizing what you have learned thus far:

• $resource is pretty useful for targeting RESTful service interactions. But still
it can be used for non-RESTful endpoints.

• $resource can reduce a lot of boilerplate code required for server interaction
if an endpoint confirms to RESTful access patterns.

• $resource action invocation returns a resource object or array that is
updated in the future. This is in contrast with $http invocation that always
returns a promise object.

Chapter 5

[265]

• Because $resource actions return resource objects, we can implement some
scenarios without using callback. This still does not mean calls using the
$resource service are synchronous.

We have now worked our way through using the $http and $resource services.
These are more than capable services that can take care of all your server interaction
needs. In upcoming sections, we will explore some general usage scenarios and some
advance concepts related to the $http and $resource services. The first in line is the
request/response interceptors.

Request/response interceptors
Request and response interceptors, as the names suggest, can intercept HTTP
requests and responses to augment/alter them. The typical use cases for using such
interceptors include authentication, global error handling, manipulating HTTP
headers, altering endpoint URLs, global retry logic, and some other such scenarios.

Interceptors are implemented as pipeline functions that get called one after
another just like the parser and formatter pipelines for NgModelController
(see the previous chapter).

Interceptions can happen at four places and hence there are four interceptor
pipelines. This happens:

• Before a request is sent.
• After there is a request error. A request error may sound strange but, in a

pipeline mode when the request travels through the pipeline function and
any one of them rejects the request (for reasons such as data validation), the
request lands up on an error pipeline with the rejection reason.

• After receiving the response from the server.
• On receiving an error from the server, or from a response pipeline

component that may still reject a successful response from the server due to
some technicalities.

Interceptors in Angular are mostly implemented as a service factory. They are then
added to a collection of interceptors defined over $httpProvider during the
configuration module stage.

Adding Data Persistence to Personal Trainer

[266]

A typical interceptor service factory outline looks something like this:

myModule.factory('myHttpInterceptor', function ($q, dependency1,
dependency2) {
 return {
 'request': function (config) {},
 'requestError': function (rejection) {},
 'response': function (response) {},
 'responseError': function (rejection) {}
 };});

And this is how it is registered at the configuration stage:

$httpProvider.interceptors.push('myHttpInterceptor');

The request and requestError interceptors are invoked before a request is sent
and the response and responseError interceptors are invoked after the response
is received. It is not mandatory to implement all four interceptor functions. We can
implement the ones that serve our purpose.

A skeleton implementation of interceptors is available in the framework
documentation for $http (https://code.angularjs.org/1.3.3/docs/api/ng/
service/$http) under the Interceptors section.

The Angular $httpProvider function is something that we
have used here for the first time. Like any provider, it too allows
us to configure $http service behavior at the configuration stage.

To see an interceptor in action, let's implement one!

Using an interceptor to pass the API key
The WorkoutService implementation is littered with API key references within
every $http or $resource call/declaration. There is code like this everywhere:

$http.get(collectionsUrl + "/workouts", { params: { apiKey: apiKey
 } })

Every API request to MongoLab requires an API key to be appended to the query
string. And, it is quite obvious that if we implement a request interceptor that
appends this API key to every request made to MongoLab, we can get rid of this
params assignment performed in every API call.

https://code.angularjs.org/1.3.3/docs/api/ng/service/$http
https://code.angularjs.org/1.3.3/docs/api/ng/service/$http

Chapter 5

[267]

Time to get in an interceptor! Open services.js under shared and add these lines
of code at the end of the file:

angular.module('app').provider('ApiKeyAppenderInterceptor', function
() {
 var apiKey = null;
 this.setApiKey = function (key) {
 apiKey = key;
 }
 this.$get = ['$q', function ($q) {
 return {
 'request': function (config) {
 if (apiKey && config && config.url.toLowerCase()
 .indexOf("https://api.mongolab.com") >= 0) {
 config.params = config.params || {};
 config.params.apiKey = apiKey;
 }
 return config || $q.when(config);
 }
 }
 }];
});

We create a 'ApiKeyAppenderInterceptor' provider service (not a factory).
The provider function setApiKey is used to set up the API key before an interceptor
is used.

For the factory function that we return as part of $get, we only implement a request
interceptor. The request interceptor function takes a single argument: config and
has to return the config object or a promise that resolves to the config object. The
same config object is used with the $http service.

In our request interceptor implementation, we make sure that the apiKey has been
set and the request is for api.mongolab.com. If true, we update the configuration's
param object with apiKey and this results in the API key being appended to the
query string.

The interceptor implementation is complete but the way we have implemented this
interceptor requires some other refactoring.

The WorkoutService method now does not need the API key, therefore we need
to fix the configure function. Update the config.js file and add a dependency of
ApiKeyAppenderInterceptorProvider on the config module function.

Adding Data Persistence to Personal Trainer

[268]

Inside the config function, add the following lines at the start:

ApiKeyAppenderInterceptorProvider.setApiKey("<mykey>");
$httpProvider.interceptors.push('ApiKeyAppenderInterceptor');

Update the configure method of WorkoutServiceProvider to this:

 WorkoutServiceProvider.configure("angularjsbyexample");

The configure function declaration in WorkoutServiceProvider itself needs to be
fixed. Open the services.js file from shared and fix the configure function
as shown here:

this.configure = function (dbName) {
database = database;
 collectionsUrl = apiUrl + dbName + "/collections";
}

The last part is now to actually remove references to the API key from all $http and
$resource calls. The resource declaration now should look like this:

$resource(collectionsUrl + "/exercises/:id", {}, { update: {
 method: 'PUT' } });

And for all $http invocations, get rid of the params object.

Time to test out the implementation! Load any of the list or details pages and
verify them. Also try to add breakpoints in the interceptor code and see how the
process flows.

The update code is available in chapter5/checkpoint5 for reference.
GitHub branch: checkpoint5.5 (folder – trainer)

Request/response interception is a powerful feature that can be used to implement
any cross-cutting concern related to remote HTTP invocation. If used correctly, it can
simplify implementation and reduce a lot of boilerplate code.

Interceptors work at a level where they can manipulate the complete request and
response. These work from headers, to the endpoint, to the message itself! There is
another related concept that is similar to interceptors but involves only request and
response payload transformation and is aptly named AngularJS transformers.

Chapter 5

[269]

AngularJS request/response
transformers
The job of a transformer or a transformer function is to transform the input data from
one format to another. These transformers plug into the HTTP request/response
processing pipeline of Angular and can alter the message received or sent. A good
example of the transformation function usage is AngularJS global transformers that
are responsible for converting a JSON string response into a JavaScript object and
vice versa.

Since data transformation can be done while making a request or processing a
response, there are two transformer pipelines available, one for a request and
another for a response.

Transformer functions can be registered:

• Globally for all requests/responses. The standard JSON string-object
transformers are registered at a global level. To register global transformer
function we need to push or shift a function either to the $httpProvider.
defaults.transformRequest or $httpProvider.defaults.
transformResponse array. As always with a pipeline, order of registration is
important. Global transformer functions are invoked for every request made
or response received using the $http service, depending upon the pipeline
they are registered in.

The $http service too contains $http.defaults, which is
equivalent to $httpProvider.defaults. This allows us to change
these configurations at any time during app execution.

• Locally on a specific $http or $resource action invocation. The config
object has two properties: transformRequest and transformResponse,
which can be used to register any transformer function. Such a transformer
function overrides any global transformation functions for that action.

Adding Data Persistence to Personal Trainer

[270]

The $httpProvider.defaults or $http.defaults function also
contains settings related to default HTTP headers that are sent with every
HTTP request.
This configuration can come in handy in some scenarios. For example,
if the backend requires some specific headers to be passed with every
request, we can use the $http.defaults.headers.common collection
to append this custom header:

$http.defaults.headers.common.Authorization = 'Basic
YmVlcDpib29w'

Coming back to transformers! From an implementation standpoint, a transformer
function takes a single argument, data, and has to return the transformed data.

Next, we have an implementation for one such transformer that AngularJS uses
to convert a JavaScript object to a JSON string. This is a part of the AngularJS
framework code:

function(d) {
 return isObject(d) && !isFile(d) ? toJson(d) : d;
}

The function takes data and transforms it into a string by calling an internal method
toJson and returning the string representation. This transformer is registered in the
global request transformer pipeline by the framework.

Local transformation functions are useful if we do not want to use the global
transformation pipeline and want to do something specific. The following example
shows how to register a transformer at the action or HTTP request level:

service.Exercises = $resource(collectionsUrl + "/exercises/:id", {}, {
update: { method: 'PUT' },
 get: {
 transformResponse: function (data) {
 return JSON.parse(data); }
 }
});

In this Resource class declaration we register a response transformer for the get
action. This function converts the string input (data) into an object, something
similar to what the global response transformer does.

Chapter 5

[271]

A word of caution
Using a local transform function with specific $resource or $http
overrides any global transformation function.

In the preceding example, the data variable will contain the string value of a
response received from a server instead of the deserialized object. By supplying our
custom response transformer to tranformResponse, we have overridden the default
transformer that deserializes JSON response.

If we need to run global transform functions too, we need to create an array of
transformers, containing both the global and custom transformers, and assign it to
transformRequest or transformResponse, something like this:

service.Exercises = $resource(collectionsUrl + "/exercises/:id", {}, {
update: { method: 'PUT' },
 get: {
 transformResponse:
 $http.defaults.transformResponse.concat(function (value) {
 return doTransform(value); })
 }
});

The next topic that we take up here is route resolution when promises are rejected.

Handling routing failure for rejected
promises
The Workout Builder page in Personal Trainer depends upon the resolve route
configuration to inject the selected workout into WorkoutDetailController.

The resolve configuration has an additional advantage if any of the resolve
functions return a promise like the selectedWorkout function:

return WorkoutBuilderService.startBuilding(
 $route.current.params.id);

Adding Data Persistence to Personal Trainer

[272]

When the promise is resolved successfully, the data is injected into the controller, but
what happens on promise rejection or error? The preceding promise can fail if we
enter a random workout name in the URL such as /builder/workouts/dummy and
try to navigate, or if there is a server error. With a failed promise, two things happen:

• Firstly, the app route does not change. If you refresh the page using the
browser, the complete content is cleared.

• Secondly, a $routeChangeError event is broadcasted on $rootScope
(remember Angular events $emit and $broadcast).

We can use this event to give visual clues to a user about the path/route not found.
Let's try to do it for the Workout Builder route.

Handling workouts not found
We can an some error on the page if the user tries to navigate to a non-existing
workout. The error has to be shown at the container level outside the ng-view
directive.

Update index.html and add this line before the ng-view declaration:

<label ng-if="routeHasError" class="alert
 alert-danger">{{routeError}}</label>

Open root.js and update the event handler for the $routeChangeSuccess event
with the highlighted code:

$scope.$on('$routeChangeSuccess', function (event, current,previous) {
 $scope.currentRoute = current;
 $scope.routeHasError = false;
});

Add another event handler for $routeChangeError:

$scope.$on('$routeChangeError', function (event, current, previous,
error) {
 if (error.status === 404
&& current.originalPath === "/builder/workouts/:id") {
 $scope.routeHasError = true;
 $scope.routeError = current.routeErrorMessage;}
});

Chapter 5

[273]

Lastly, update config.js by adding the routeErrorMessage property on the route
configuration to edit workouts:

$routeProvider.when('/builder/workouts/:id', {
 // existing configuration
 topNav: 'partials/workoutbuilder/top-nav.html',
 routeErrorMessage:"Could not load the specific workout!",
 //existing configuration

Now go ahead and try to load a workout route such as this: /builder/workouts/
dummy; the page should show an error message.

The implementation was simple. We declared model properties routeError to track
the error message and routeHasError to determine whether the route has an error.

On the $routeChangeSuccess and $routeChangeError event handler, we
manipulate these properties to produce the desired result. The implementation of
$routeChangeError has extra checks to make sure that the error is only shown
when the workout is not found. Take note of the routeErrorMessage property that
we define on the route configuration. We did such route configuration customization
in the last chapter for configuring navigation elements for the active view.

We have fixed routing failure for the Workout Builder page, but the exercise builder
page is still pending. And again, I will leave it to you to fix it yourself and compare it
with the implementation available in the companion codebase.

Checkout the implementation done so far in chapter5/
checkpoint6.
GitHub branch: checkpoint5.6 (folder: trainer)

Another major implementation that is pending is fixing of 7 Minute Workout as
currently it caters only to one workout routine.

Adding Data Persistence to Personal Trainer

[274]

Fixing the 7 Minute Workout app
As it stands now, the 7 Minute Workout (or Workout Runner) app can only play one
specific workout. It needs to be fixed to support execution of any workout plan built
using Personal Trainer. There is an obvious need to integrate these two solutions.
We already have the groundwork done to commence this integration. We have the
shared model services and we have the WorkoutService to load data—enough to
get us started.

Fixing 7 Minute Workout and converting it into a generic Workout Runner roughly
involves the following steps:

1. Removing the hardcoded workout and exercises used in 7 Minute Workout
from the controller.

2. Fixing the start page to show all available workouts and allowing users to
select a workout to run.

3. Fixing the workout route configuration to pass the selected workout name as
the route parameter to the workout page.

4. Loading the selected workout data using WorkoutService and starting the
workout.

And, of course, we need to rename the 7 Minute Workout part of the app; the name
now is a misnomer. I think the complete app can now be called Personal Trainer. We
can remove all references to 7 Minute Workout from the view as well.

An excellent exercise to try out ourselves! And that is why I am not going to walk
you through the solution. Instead, go ahead and implement the solution and
compare your implementation with the one available in chapter5/checkpoint7
(GitHub branch: checkpoint5.7 (folder: trainer)).

It's time now to end the chapter and summarize your learning.

Summary
We now have an app that can do a lot of stuff. It can run workouts, load workouts,
save and update them, and track history. And if we look back, we have achieved
this with minimal code. I can bet if we try this in standard jQuery or some other
framework, it would require substantially more effort as compared to AngularJS.

We started the chapter by providing a MongoDB database on MongoLab servers. Since
MongoLab provided a RESTful API to access the database, we saved some time by not
setting up our own server infrastructure.

Chapter 5

[275]

The first AngularJS construct that we touched upon was the $http service. $http is
the primary service for connecting to any HTTP backend.

You learned about the $http config object and how it is used to configure any
HTTP request. We also saw how the standard $http configuration helps us to
readily consume server endpoints that consume and return JSON data.

You also learned how the complete $http infrastructure is based on promises and
callback invocation and is totally asynchronous in nature.

For the first time, in this chapter we created our own promise and you learned how
to create custom promises and resolve them.

We fixed our Personal Trainer app so it uses the $http service to load and save
workout / exercise data. In the process, you also learned about issues surrounding
cross-domain resource access. You learned about JSONP, a workaround to
circumvent a browser's same origin restrictions and how to issue JSONP requests
using Angular. We also touched upon CORS, which has emerged as a standard when
it comes to cross-domain communication.

Next in line was the $resource service. This is a service that makes consuming
RESTful endpoints easy. We replaced the exercise load and save implementation
using $http with a $resource implementation. This refactoring resulted in more
compact code that has a limited number of callbacks.

We then focused our attention on some common scenarios when dealing with remote
server calls. We explored the concept of Interceptors used by AngularJS to manipulate
a HTTP request/response at a global level. We created our own request interceptor
to append the API key to every request made to the MongoLab server.

Then came Angular transformers that could intercept request/response message
payloads and do some transformation. We saw how AngularJS uses these
transformers to handle JSON data and automatically serializes and deserializes it.

Lastly, we touched upon routing failures when the route uses resolve
configurations that return a promise.

We have now covered most of the building blocks of Angular, except the big one:
AngularJS directives. We have used directives everywhere but have not created
one. The next chapter is exclusively dedicated to AngularJS directives. We will be
creating a number of small directives, such as a remote validator, AJAX button, and
validation clues directive for the Workout Builder app. You will also learn how to
integrate a jQuery plugin as a directive in Angular.

Working with Directives
One of the major reasons for AngularJS' popularity is directives and they are
everywhere. We have used them throughout the book without putting much thought
into how they actually function and how to create one. Directives, together with
data-binding infrastructure, make true view-logic separation possible.

Consuming directives is easy, but creating one is a complex task and requires an
understanding of the inner workings of the framework and directives itself. This
chapter will give an insight into the world of directives and in the process you will
build some useful directives for the Personal Trainer app.

The following topics will be covered in this chapter:

• Understanding directive basics: We learn about what directives are and
build a rudimentary directive.

• Understanding the phases of directive execution: We look at the compile
and link phases of directive execution and analyze the framework's ng-
click directive in this context.

• Implementing inter-directive communication: You will build
interdependent directives and learn the intricacies of inter-directive
communication.

• Working with the $compile and $parser services. You will explore two
important services: $compile and $parser, and learn to utilize them to
build directives.

• Using templates and transcludes directives: When working with directive
templates, transclusion is an important concept to understand and use. We
build directives that utilize templates and transclude content.

• Directives and scopes: Explore and learn about the different scope models
associated with directives, from the original parent scope and child scope to
the isolated scope.

Working with Directives

[278]

• Building reusable directives with isolated scope. Understanding and
using isolated scopes to create reusable directive components, and creating
multiple directives with isolated scopes.

• Integrating jQuery and AngularJS: They may seem orthogonal, but they can
be made to co-exist. By creating a wrapper directive over a jQuery plugin, we
will explore and understand the integration patterns.

Let's get started.

Directives – an introduction
We know what directives are and we have used them all along: ng-click, ng-show,
ng-style, and ng-repeat are all directives. These are JavaScript objects defined
using the directive function of the Module API. Once constructed, they are either
attached to existing HTML elements or extend the existing HTML vocabulary with
new elements/tags.

Directives have been conceptualized and incorporated into the framework in such a
way that they allow the integration of controllers and views naturally and in a less
verbose manner. It's the job of a directive to orchestrate the interaction between the
controller and the view, keeping the separation of concerns intact.

From a functional standpoint, there are broadly two families of directives:

• Directives that extend the behavior of existing HTML element, such as ng-
click, ng-show, and ng-style.

• Component directives come with their own view templates and behavior.
The one place that we have used such a directive is with the $modal service.
The $modal service used in show history and YouTube video sections
internally injects directives: modal-backdrop and modal-window into the
HTML. These two directives actually provide the dark backdrop and the
basic window layout for modal dialog.

• There is also a special class of directives that may not come with their own
template, but can take any HTML content as a template and add some
behavior. The ng-repeat, ng-if, ng-include, and ng-view directives are
some of the examples.

In the next section, we will build directives that showcase working of the preceding
types. Let's start our discussion with understanding how directives are structured.

Chapter 6

[279]

Anatomy of a directive
To create a directive, we use the directive function on the Module API. The
signature looks like this:

directive(name, directiveFactory);

The name attribute signifies the name and the directiveFactory function is a factory
function that returns an object containing the directive configuration. The directive
configuration object is a complex beast and will require most of our attention. This is
where we define the complete directive configuration and behavior.

This is how the complete directive definition object returned by the factory
function looks:

 function directiveFactory (injectables) {
 var directiveDefinitionObject = {
 priority: 0,
 template: 'html', //use either template or templateUrl
 templateUrl: 'directive.html',
 replace: false,
 transclude: false,
 restrict: 'A',
 scope: false,
 controller: function ($scope, $element, $attrs,
 $transclude) {},
 require: 'siblingDirectiveName',
 compile: function compile(tElement, tAttrs, transclude)
 {}, // use compile or link function
 link: function postLink() {}
 };
 return directiveDefinitionObject;
};

This is one big configuration object that may look intimidating at first, but don't
worry as all the properties are not required. Once we understand the working of
directives, we can easily manage the directive definition object.

Let's start with something really simple.

Creating a workout-tile directive
Just to get our hands dirty, let's build our first bare minimum directive— workout-
tile—a simple exercise in directive building. Let's convert the workout list item tile
to a directive.

Working with Directives

[280]

Before we start, please download the working copy of Personal Trainer
from the checkpoint7 folder under chapter5, available as part of
this book's companion code. It contains the complete implementation
for the Personal Trainer app we have discussed so far.
The code is also available on GitHub (https://github.com/
chandermani/angularjsbyexample) for everyone to download.
Checkpoints are implemented as branches in GitHub. Download the
GitHub branch checkpoint5.7 from the trainer folder.

Add a new file directives.js to the workoutbuilder folder under js and add this
directive definition:

angular.module('WorkoutBuilder')
 .directive('workoutTile', function () {
return {
 templateUrl:'/partials/workoutbuilder/workout-tile.html'
 }
});

Next add the reference for directives.js in index.html in the script declaration
section. The directive definition object for workoutTile uses only one property
tempateUrl. The templateUrl property points to the location of the file that stores
the directive template. What goes into this file will be clear in the next few steps.

The templateUrl property points to a file that we need to build. Add another file
workout-tile.html to the workoutbuilder folder under partials and copy the
complete content defined inside ng-repeat from the workouts.html file under
partials/workoutbuilder to workout-tile.html. This is the content outline that
goes into workout-tile.html:

<div class="title">{{workout.title}}</div>
<div class="stats"><!--Existing content --></div>

In workouts.html, remove the tile HTML content from ng-repeat and replace it
with the following line:

Go ahead and load the workout list page (#/builder/workouts). Well… nothing
changed! But the tiles are now rendered using workoutDirective. We can confirm
this by inspecting the source HTML. Look for the string: workout-tile.

https://github.com/chandermani/angularjsbyexample
https://github.com/chandermani/angularjsbyexample

Chapter 6

[281]

We could have done this using the inbuilt ng-include directive, as
follows:

<span ng-include='/partials/workoutbuilder/
 workout-tile.html'>

Essentially, workout-tile is doing what ng-include does, but
the template HTML is fixed.

Let's make a small change before we try to derive some learning from our new
directive. Update the directive definition object and include a new property
restrict before templateUrl:

restrict:'E',
templateUrl:'/partials/workoutbuilder/workout-tile.html'

Now, we can change the directive declaration in HTML to:

<workout-tile></workout-tile> //replace the span declaration

Refresh the workout list page again. It's the same workout list, but this time tile
content is wrapped in a new tag <workout-tile>, as shown here:

Not very impressive but not bad either. What have we achieved with these few lines?

We now have a directive that encapsulated the view template for the HTML workout
tile. Any reference to this directive in HTML now renders the tile content. The first
version (without the restrict configuration) rendered the template HTML inside
span, whereas in the second revision we created a custom HTML tag workout-tile
to host the workout tile's content.

Working with Directives

[282]

There are few observations from our first directive:

• Directives have a name, and it is normalized. We are defining a directive in
JavaScript as workoutTile, but we refer to it in HTML as workout-tile.
Directive naming follows camel case but the directives are referenced in
HTML using the dash delimiter (-) as shown in the previous screenshot. In
fact, directives can be referenced in HTML with extra prefixes such as x- or
data-. For example, the workoutTile directive in HTML can be referred to
as x-workout-tile, data-workout-tile, or the standard workout-tile
pattern. This process of matching the HTML directive reference to the actual
directive name is called normalization.

All framework directives are prefixed with the letters ng. It's
always good to prefix the custom directive we create with
some initials to avoid naming conflicts.

• Directives can have template (an inline template) or templateUrl (reference
to the template). The template and templateUrl properties in the directive
definition object refer to the HTML template the directive uses, except the
former is used to define the template inline whereas the second one uses
external templates (remote or based on ng-template).
This is not a required property in directive configuration. We only use it if
the directive comes with its own template. As explained at the start of the
chapter, there are directives that only extend the behavior; such directives do
not use template or templateUrl.

• Directives can be applied as an attribute, element, class, or comment.
Interestingly, with the second version of the workoutTile directive, we
created a new HTML tag. In other words, we extended the standard HTML
domain-specific language (DSL). That's pretty cool! This was possible
because the updated directive definition had a new restrict property with
the value E (element).

• A directive can be applied as follows:
 ° Attribute (workout-tile=""): This is the most common way and

signifies that the directive is extending the existing HTML tag (in
most of the cases). This is a default value (represented as A) for the
restrict configuration property.

 ° Element (<workout-tile></workout-tile>): This implies the
directive can be an HTML element as in the previous example. This is
often used for directives that come with their own template and logic.
This is represented as E.

Chapter 6

[283]

 ° Class (class="workout-tile"): This allows you to add the directive
name inside a class attribute. This is represented as C. This is mostly
used to support older browsers, specifically older versions of Internet
Explorer (IE) that do not like custom attributes or elements.

 ° Comment (<!-- directive:workout-tile-->): This allows us to
add directives as comments! This is not very common, in fact I have
never used or seen one. This is represented as M in restrict.

When creating directives, it's better to stick to A and E if we are using modern
browsers. We can use more than one restriction too. AE, EC, AEC, or AECM are all valid
combinations. If we use a combination such as AE, it implies a directive can be added
as an attribute or element.

Supporting IE with the directives element is a challenge in itself.
Look at the framework documentation to understand how to
handle IE compatibility issues (https://code.angularjs.
org/1.3.3/docs/guide/ie).

To conclude, the workoutTile directive may not be a terribly useful directive, as it
just creates an encapsulation over the workout tile HTML. But this directive allows
us to represent the complete view as an HTML tag (<workout-tile></workout-
tile>), adding to the readability of HTML content.

If you are having trouble running this directive, a working
implementation is available in the checkpoint1 folder under
chapter6 in the companion codebase. The GitHub branch is
checkpoint6.1 and the folder is trainer.

Let's look at a different directive that instead extends the behavior of the existing
HTML element: the ng-click directive.

Exploring the ng-click directive
The useful and well-defined ng-click directive allows us to attach behavior to
an existing HTML element. It evaluates the expression defined on the ng-click
attribute when the element is clicked. If we look at the Angular source code, here is
how the directive is defined:

ngModule.directive('ngClick', ['$parse', function ($parse) {
 return {
 compile: function (element, attr) {

https://code.angularjs.org/1.3.3/docs/guide/ie
https://code.angularjs.org/1.3.3/docs/guide/ie

Working with Directives

[284]

 var fn = $parse(attr['ngClick']);
 return function (scope, element, attr) {
 element.on('click', function (event) {
 scope.$apply(function () {
fn(scope, { $event: event });
 });
 });
 };
}};}]);

The preceding directive has been simplified a bit, but the
implementation is intact.

These few lines of code touch every aspect of directive building, and we are going to
dissect this code bit by bit to understand what is happening.

A directive setup is all about creating a directive definition object and returning it.
The directive definition object for ng-click only defines one property, the compile
function with arguments such as these:

• element: This is the DOM element on which the directive has been defined.
The element can be a jQuery element wrapper (if the jQuery library has been
included) or a jqLite wrapper, which is the lite version of jQuery included as
part of the Angular framework itself.

Reference to jQuery has to be included in the script references before
AngularJS libraries. Then, Angular will use the jQuery wrapper element.
Otherwise, Angular falls back to the jqLite wrapper element.
The capabilities of the jqLite element have been detailed in the framework
documentation at https://code.angularjs.org/1.3.3/docs/
api/ng/function/angular.element.

• attr: This is an object that contains values for all the attributes defined on
the directive element. The attributes available on this object are already
normalized. Consider this example:
<button ng-click='doWork()' class='one two three'>
Click Me</button>

The attr object will have the properties: attr.ngClick and attr.class
with the values doWork() and one two three, respectively.

https://code.angularjs.org/1.3.3/docs/api/ng/function/angular.element
https://code.angularjs.org/1.3.3/docs/api/ng/function/angular.element

Chapter 6

[285]

Remember attr contains all attributes defined on the
directive element not just the directive attribute.

The compile function should always return a function commonly referred to as
the link function. Angular invokes these compile and link functions as part of the
directive's compilation process. We will cover the directive life cycle later in the
chapter, where we look at the compile and link phases of a directive execution and
their significance.

For now, the things to remember are:

• Directive compilation has two phases: compile and link
• The compile function mentioned earlier is invoked during the directive's

compile phase
• The function that compile returns (also referred to as the link function) is

invoked during the link phase

The very first line in the compile function uses an injected dependency, $parse.
The job of the $parse service is to translate an AngularJS expression string into a
function. For the ng-click directive, the expression string points to value of the
HTML attribute ng-click.

Ever wondered how the ng-click="showWorkoutHistory()"
declaration on the view translates into a function call to
showWorkoutHistory() on the controller scope? Well, $parse has
a role to play here, it converts the expression string to a function.

This function is then used to evaluate the expression in context of a specific object
(mostly a scope object). These two lines in the preceding directive do exactly what
we just described:

var fn = $parse(attr['ngClick']); // generate expression function
...
fn(scope, { $event: event }); //evaluates in scope object context

Check the AngularJS documentation for the $parse service (https://code.
angularjs.org/1.3.3/docs/api/ng/service/$parse) for more details,
including examples.

Working with Directives

[286]

Use the $parse service to parse string expressions
when building directives that rely on such expressions.
Framework directives such as ng-click, ng-show, ng-
if, and many others are good examples of such directives.

After setting up the expression function at the start, the compile implementation
returns the link function.

When the link function for ng-click is executed, it sets up an event listener for the
DOM event click by calling the element.on function on the directive element.
This completes the directive setup process, and the event handler now waits for the
click event.

When the actual DOM click event occurs on the element, the event handler executes
the expression function (fn(scope, { $event: event });).

It's the same function created by parsing the ng-click attribute value (such as ng-
click='doWork()').

By wrapping the expression execution inside scope.$apply, we allow Angular to
detect model changes that may occur when the expression function is executed and
update the appropriate view bindings.

Consider the following example where we have an ng-click setup:

 <button ng-click="doWork()">Do Work</button>

Here is the doWork implementation:

$scope.doWork= function() {
 $scope.someVal="Work done";
}

The expression function execution for the preceding example executes doWork
and updates the scope variable: someVal. By wrapping the expression execution
in $scope.$apply, Angular is able to detect whether the someVal property has
changed and hence can update any view bindings for someVal.

If you are still confused, it would be a good time to look at Chapter 3,
More AngularJS Goodness for 7-Minute Workout and read the AngularJS
dirty checking and digest cycles section.
The bottom line is that any expression evaluation that is triggered
from outside the AngularJS execution context needs to be wrapped in
scope.$apply.

Chapter 6

[287]

This completes the execution flow for the ng-click directive. It's time to build
something useful ourselves: a directive that can do remote validation!

Building a remote validation directive to
validate the workout name
Each exercise/workout is uniquely identified by its name property. Thus, before
persisting for the first time, we need to make sure that the user has entered a unique
name for the workout/exercise. If the exercise/workout already exists with this
name, we need to inform the user with the appropriate validation message.

This can be achieved by performing some custom validation logic in the controller's
save function and binding the result to some validation label in the view. Instead, a
better approach will be to create a validation directive, which can be integrated with
the form validation infrastructure for consistent user experience.

In Chapter 4, Building Personal Trainer, we touched upon Angular form
validations and how it works, but did not create a true custom validator.
We are going to build one now using a directive.

We can either create a directive specifically for unique name validation or a generic
directive that can perform any remote validation. At first, the requirement of
checking a duplicate name against a datasource (the MongLab database) seems to be
too specific a requirement which cannot be handled by a generic validator. But with
some sensible assumptions and design choices, we can still implement a validator
that can handle all types of remote validation, including workout name validation,
using the MongoLab REST API.

The plan is to create a validator that externalizes the actual validation logic. The
directive will take the validation function as input from the controller scope.
This implies that the actual validation logic is not part of the validator but is
part of the controller that actually needs to validate input data. The job of the
directive is just to call the scope function and set error keys on input element's
ngModelController.$error object. We have already seen how the $error object is
used to show validation messages for input in Chapter 4, Building Personal Trainer.

Remote calls add another layer of complexity due to asynchronous nature of these
calls. The validator cannot get the validation results immediately; it has to wait.
AngularJS promises can be of great help here. The remote validation function defined
on the controller needs to return a promise instead of validating results and the
remote validation directive needs to wait over it before setting the validation key.

Working with Directives

[288]

Let's put this theory to practice and build our remote validation directive, aptly
named remote-validator.

This is the first time we are building a form validation directive in
Angular. We will be building two implementation remote-validator
directives, one for Angular 1.3 or less and one for Angular 1.3. Form
validations, especially model validators in Angular 1.3 have gone through
some major changes, as we saw in Chapter 4, Building Personal Trainer.
The model validators are no longer part of parser/formatter pipeline in
Angular 1.3, hence the two directives.
We could still have built the directive using an older version of Angular
and it would have worked fine with Angular 1.3 as well. However,
building two separate directives allows us to highlight the new features of
Angular 1.3 and how to utilize them.
Please read how remote-validator is implemented for Angular 1.3
or less before proceeding to Angular 1.3. We will cover some important
concepts in the first implementation that are common for both versions.

The remote-validator directive
(for v1.3 or less)
The remote-validator directive does validation against remote data source via a
function defined on the inherited scope. This function should return a promise. If the
promise is resolved successfully, validation succeeds, else the validation fails
(on promise rejection).

Let's integrate it with the workout builder view. Open workout.html from the
workoutbuilder folder and update the workoutName input by adding two
new attributes:

<input type="text" name="workoutName" ...
 remote-validator="uniqueName" remote-validator-function=
 "uniqueUserName(value)">

Then, add the validation label after other validation labels for the
workoutName input:

<label ng-show = "hasError(formWorkout.workoutName,
 formWorkout.workoutName.$error.uniqueName)" ng-class = "{
 'text-danger': formWorkout.workoutName.$error.uniqueName}">
 Workout with this name exists.</label>

Chapter 6

[289]

The remote-validator attribute has the value uniqueName and is used as the error
key for the validation ($error.uniqueName). See the preceding validation label to
know how the key is utilized. The other attribute remote-validator-function is
not a directive but still has an expression assigned to it (uniqueUserName(value))
and a function defined on WorkoutDetailController. This function validates
whether the workout name is uniquely passed in the workout name (value)
as parameter.

Our next job now is to implement the controller method uniqueUserName. Copy this
piece of code to the WorkoutDetailController implementation:

$scope.uniqueUserName = function (value) {
if (!value || value === $routeParams.id) return $q.when(true);
 return WorkoutService
 .getWorkout(value.toLowerCase())
 .then(function (data) { return $q.reject(); },
 function (error) { return true; });
};

This function uses two new services: $q and WorkoutService. Add these
dependencies to WorkoutDetailController before proceeding further

The uniqueUserName method checks whether a workout exists with the same name
by calling the getWorkout function on WorkoutService. We use promise chaining
(see Chapter 5, Adding Data Persistence to Personal Trainer) here and return the promise
object received as part of the then function invocation.

The promise returned as part of the then invocation is rejected if success callback
is invoked (using return $q.reject()), else it is successfully resolved with the
true value.

Remember the promise returned by then is resolved with
the return values of its success or error callback.

The very first line uses $q.when to return a promise object that always resolves to
true. If the value parameter is null/undefined or the workout name is the same as
the original name (happens in edit cases), we want the validation to pass.

Working with Directives

[290]

The last part of this puzzle is the remote-validator directive implementation itself.
Open directives.js under shared and add the following directive code:

angular.module('app').directive('remoteValidator', ['$parse', function
($parse) {
 return {
 require: 'ngModel',
 link: function (scope, elm, attr, ngModelCtrl) {
 var expfn = $parse(attr["remoteValidatorFunction"]);
 var validatorName = attr["remoteValidator"];
 ngModelCtrl.$parsers.push(function (value) {
 var result = expfn(scope, { 'value': value });
 if (result.then) {
 result.then(function (data) {
 ngModelCtrl.$setValidity(validatorName, true);
 }, function (error) {
 ngModelCtrl.$setValidity(validatorName, false); });
 }
 return value;
 });
 }
 }
}]);

Let's first verify remote validation is working fine. Open the workout builder page
by clicking on the new workout button on the top menu. Enter a workout name that
already exists (such as 7minworkout) and wait for a few seconds. If the workout
name matches an existing workout name, validation will trigger with this
validation message:

A working implementation for this directive is available
in chapter6/checkpoint2. The GitHub branch is
checkpoint6.2 and the folder is trainer.

Chapter 6

[291]

Let's dissect the directive code as there are some new concepts implemented.
The first one is the require property with the value is ngModel. Let's first try to
understand the role of require.

The require directive definition
Directives in Angular are not standalone components. The framework does provide
a mechanism where a directive can take a dependency on one or more directives.
The require property is used to denote this dependency. The remote-validator
directive requires an ng-model directive to be available on the same HTML element.

When Angular encounters such a dependency during directive execution (during the
link phase), it injects the required directive controller into the last argument of the
link function as seen in the preceding section (the ngModelCtrl parameter).

A directive dependency is actually a dependency on the directive's
controller function.

The require parameter can take a single or array of dependency. For an array of
dependency, the dependencies are injected as an array (of directive controllers) into
the last argument of the link function.

Such a directive dependency setup has a limitation. A directive can take dependency
on a directive that is defined on the same element or its parent tree. By default, it
searches for the dependent directive on the same element. We can add a prefix to
affect the behavior of this search. The following descriptions were taken from the
Angular compile documentation (https://code.angularjs.org/1.2.14/docs/
api/ng/service/$compile):

? - Attempt to locate the required controller or pass null to the link fn if not found.
The standard behavior otherwise is to throw exception if dependency is not found.

^ - Locate the required controller by searching the element's parents. Throw an
error if not found.

?^ - Attempt to locate the required controller by searching the element's parents or
pass null to the link fn if not found.

https://code.angularjs.org/1.2.14/docs/api/ng/service/$compile
https://code.angularjs.org/1.2.14/docs/api/ng/service/$compile

Working with Directives

[292]

To reiterate, the dependency that we add using require is a directive
(require: 'ngModel'), what gets injected is a directive controller (in this case,
NgModelController).

Other than the restrict property, we use the link function where most of the
action is happening.

The link function
The link function of the directive gets called during the link phase of directive
execution. Most of the Angular directives use the link function to implement
their core functionality.

The compile and controller functions are some other
extension points to attach behaviors to a directive.

Here is the signature of the link function:

link: function (scope, element, attr, ctrls) {

The parameters are as follows:

• scope: This is the scope against which the directive has been set up. It can
be the original parent scope, a new child scope or an isolated scope. We will
look at directive scopes later in this chapter.

• element: Like the compile function's element property, this is the DOM
element on which the directive is defined.

Angular extends the element property and adds some handy functions
to it, for example, functions such as controller(name) to extract the
controller linked to element, scope() to get the scope object associated
with the element, and others such functions.
Check the documentation on angular.element (https://code.
angularjs.org/1.3.3/docs/api/ng/function/angular.
element) to understand the complete API.

• attr: This is a normalized list of attributes defined on elements.
• ctrls: This is a single controller or an array of controllers passed into the

link function.

https://code.angularjs.org/1.3.3/docs/api/ng/function/angular.element
https://code.angularjs.org/1.3.3/docs/api/ng/function/angular.element
https://code.angularjs.org/1.3.3/docs/api/ng/function/angular.element

Chapter 6

[293]

The compile and link function parameters are assigned based
on position; there is no dependency injection involved in the link
function's invocation.

The remote-validator directive uses the link function to set up the remote
validation logic. Let's look at how the actual validation is done:

• First, we extract the error key name from the HTML attribute
remote-validator (uniqueName) and the validation function
(uniqueUserName(value)) from the remote-validator-function attribute.

• Then, the $parse service is used to create an expression function. This is
similar to the ng-click directive implementation earlier.

• We then register our custom validation function with the input model
controller's (ngModelCtrl) parser pipeline. The ngModelCtrl controller is
injected into the link function due to our dependency on ngModel defined
on the restrict property.

• This validation function is called on every user input. The function invokes
the expression function setup earlier in the context of the current scope and
also passes the input value in value (second argument).
var result = expfn(scope, { 'value': value });

• This results in invocation of the $scope function's uniqueUserName value
defined on workoutDetailController. The uniqueUserName function
should returns a promise and it does.

• We attach callbacks to the promise API's then function.
 ° The success callback marks that the validation is successful.

ngModelCtrl.$setValidity(validatorName, true);

 ° The error callback sets the key to false and hence the
validation fails.

• Finally the parser function returns the original value at the end of parser
execution without modification.

Remember the then callback occurs sometime in future after the parser
function execution completes. Therefore, the parser function just returns
the original value.

Working with Directives

[294]

This is what makes the remote validation work. By offloading some of the work
that a validator does to a controller function, we get an ability to use this validator
anywhere and in any scenario where a remote check is required.

A similar validator can be implemented for standard nonasynchronous
validations too. Such validators can do validations by referencing a
validation function defined on the parent controller. The validation
function instead of returning a promise, returns true or false.

An interesting thing with this directive is that the link function uses all the
parameters passed to it, which gives us a fair idea of how to utilize scope, element,
attributes, and controller in directives.

The remote-validator directive in Angular 1.3
I hope you have read the last few sections/subsections on remote-validator, as
this section will only cover the parts that have changed post Angular 1.3.

As we saw in Chapter 4, Building Personal Trainer, form validation has gone
through some changes post Angular 1.3. Validators in v1.3 are registered with the
$validators and $asyncValidators properties of NgModelController. As the
name of the properties suggest, standard validators are registered with $validators
and validators that perform asynchronous operations with $asyncValidators.

Since we too are doing remote validations, we need to use the
 $asyncValidators object to register our validator. Let's create
 a new definition of the remote-validator directive that uses
 $asyncValidators. Add this directive definition to directives.js
 file under shared:
angular.module('app').directive('remoteValidator', ['$parse',
 function ($parse) {
 return {
 require: 'ngModel',
 link: function (scope, elm, attr, ngModelCtrl) {
 var expfn = $parse(attr["remoteValidatorFunction"]);
 var validatorName = attr["remoteValidator"];
 ngModelCtrl.$asyncValidators[validatorName] =
function (value) {
 return expfn(scope, { 'value': value });
 }
 }
 }
}]);

Chapter 6

[295]

We register a function with $asyncValidators, with a name derived from the
remote-validator attribute value (such as remote-validator="uniquename").

The function property name registered with $asyncValidators
is used as the error key when the validation fails. In the preceding
case, the error key will be uniquename (check the HTML
declaration for the directive).

The asynchronous validation function should take an input (value) and should
return a promise. If the promise is resolved to success, then the validation passes,
else it is considered failed.

One important difference between the v1.3 (or lesser) and this one is that in the
earlier version, we need to explicitly call ngModelCtrl.$setValidity to set the
validity of the model controller. In Angular 1.3, this is automatically done based on
the resolved state of the promise.

Standard validators (nonasynchronous ones) in Angular 1.3 also work
in a similar fashion. For standard validators, the validation function
is registered with the $validators object, and the function should
return a Boolean value instead of a promise.

That's how we implement the same validation in Angular 1.3 and upwards.

The remote-validator directive seems to be working now, but it still has some
flaws that need to be addressed. The first being remote validation being called on
every input update. We can verify this by looking at the browser network log as we
type something into the workout name input:

Angular 1.3 version of the directive is available in the checkpoint2
folder of chapter6. The GitHub branch is checkpoint6.2 and the
folder is trainer.

Working with Directives

[296]

Well, this is how two-way binding works. The view changes are immediately
synced with the model and the other way around too. For remote validation, this
is a nonperformant approach as we should avoid triggering remote validation so
frequently. The better way will be to validate once the input loses focus (blur).

There is a directive for that! Let's add a directive for that, update-on-blur.

Angular 1.3 already supports model update on blur using the ng-model
and ng-model-options directives. We have already covered these
directives in Chapter 4, Building Personal Trainer. The update-on-blur
equivalent in Angular 1.3 would be as follows:

<input type="text" name="workoutName"
...
 ng-model-options="{ updateOn: 'blur' }">

If you are using Angular 1.3, using the ng-model-option directive
would be more appropriate.
Do read the next section to understand how update-on-blur is
implemented, and how it uses the priority property to alter the
behavior of other directives applied to same element.

Model update on blur
We want a directive that updates the underlying model only when the input
loses focus. Not my original idea but derived from the SO post at http://
stackoverflow.com/questions/11868393/angularjs-inputtext-ngchange-
fires-while-the-value-is-changing.

Add this directive to directives.js under shared:

 angular.module('app').directive('updateOnBlur', function () {
 return {
 restrict: 'A',
 require: 'ngModel',
 link: function (scope, elm, attr, ngModelCtrl) {
 if (attr.type === 'radio' || attr.type === 'checkbox')
return;
 elm.unbind('input').unbind('keydown').unbind(
 'change');
 elm.bind('blur', function () {
 scope.$apply(function () {
 ngModelCtrl.$setViewValue(elm.val());
 });

http://stackoverflow.com/questions/11868393/angularjs-inputtext-ngchange-fires-while-the-value-is-changing
http://stackoverflow.com/questions/11868393/angularjs-inputtext-ngchange-fires-while-the-value-is-changing
http://stackoverflow.com/questions/11868393/angularjs-inputtext-ngchange-fires-while-the-value-is-changing

Chapter 6

[297]

 });
 }
 };
});

This directive definition object structure looks similar to the remote-validator
directive. Like remote-validator, the implementation here has been done in the
link function.

The link function basically unbinds all existing event handlers on the target input
and rebinds only the blur event. The blur event handler updates the model by
calling ngModelCtrl.$setViewValue, retrieving the actual view content from view
using the elm.val() DOM function.

Go ahead and refresh the new workout page and enter some data in the workout
name field. This time validation only triggers on blur, and hence the remote calls are
made once the focus is lost.

This directive has affected the overall model and view synchronization
behavior for the workout name input element. Model updates now only
happened when focus on input is lost. This implies other validations also
happen on lost focus.
To reiterate, we don't need this directive in Angular 1.3. The ng-model-
options="{ updateOn: 'blur' }" statement does the same job.

The update-on-blur function fixes the performance issue with remote validation,
but there is one more optimization we can do.

Using priority to affect the order of execution
of the compile and link functions
Remote validation is a costly operation and we want to make sure remote validation
only happens when deemed necessary. Since the workout name input has other
validations too, remote validation should only trigger if there is no other validation
error, but that is not the case at present.

Working with Directives

[298]

Remote validation is fired irrespective of whether other validations on input fail
or not. Enter a workout name bigger than 15 characters and tab out. The remote-
validator directive still fires the remote call (see the browser network log) in spite
of the failure of regex pattern validation, as shown here:

Theoretically, for the remote-validator directive, if we register the remote
validator parser function as the last function in the parser pipeline, these issues
should get resolved automatically. By registering our validators at the end of the
parser pipeline, we allow other validators to clear the value before it reaches our
parser function. It seems we are already doing that in the remote-validator
directive of the link function:

ngModelCtrl.$parsers.push(function (value) {

Still it does not work! Remote requests are still made.

This is because we are missing a small but relevant detail. There are other
directives defined on the same element as well. Specifically for this input function,
there are validation directives required and ng-pattern, both having their own
link function that registers validators in the parser and formatter pipelines. This
implies the order of registration of parser functions becomes important. To register
our parser function at last, the remote-validator link function should be executed
at the end. However, how do we affect the order of execution of link function? The
answer is the property priority.

The Angular 1.3 implementation of remote-validator does not
suffer from this issue as validators are not part of parser/formatter
pipelines in v1.3. Add to that, asynchronous validators in v1.3 always
run after the synchronous validators. Hence v1.3 of the validator does
not require the priority fix. The following content is a good read to
understand the role of priority in directive execution.

Go ahead and add the property priority on the remote-validator directive
definition object, and set it any non-zero positive number (for example, priority:
5). Refresh the page and again enter a workout name bigger than 15 characters and
tab out. This time the remote call is not fired, and we can confirm this in the network
tab of the browser.

Chapter 6

[299]

Great! This fixed the issue, now we just need to understand what happened when we
set the priority fix to a positive number.

Time to dig deeper into the directive life cycle events and their effect on
directive execution!

Life cycle of a directive
Directive setup starts when Angular compiles a view. View compilation can
happen at different times during application execution. It can happen due to the
following reasons:

• When the application bootstraps (setting up ng-app) while loading the
app for the first time

• When a view template is loaded dynamically for the first time using
directives such as ng-view and ng-include

• When we use the $compile service to explicitly compile a view fragment
(we will discuss more about the $compile service later in the chapter).

This compilation process for a directive is broken down into two phases: the compile
and the link phases. Since there are always multiple directives on the view, this
phased execution is repeated for each of the directives. Let's understand how

During the view compilation, Angular searches for directives defined on the
view by traversing the DOM tree top down from parent to child. The matching
happens based on the restrict property of directive definition object and
directive name (normalized).

A directive can be referenced in the view via an
attribute, element, class, or comment.

Once Angular is able to determine the directive reference by a view fragment,
it invokes the compile function for each of the matching directive. The compile
function invocation in turns returns a link function. This is called the compile phase
of the directive setup. At this time, view bindings are not set up; hence, we have a
raw view template. Any template manipulation can be safely done at this stage.

This is the same link function that we add to directive definition
object, through the link property or as a return value of the
compile function if the directive implements one.

Working with Directives

[300]

The resultant link function is used to set up the bindings between the view and
a scope object. When traversing down the DOM tree, Angular keeps invoking the
compile functions on the directives and keeps collecting the link functions.

Once compilation is complete, it then invokes the link function in the reverse order
with the child link function called before the parent link function (from children to
parent DOM elements) to set up the scope and view binding. This phase is termed as
the link phase.

During the link phase Angular may have to create a new scope for some directives
(for example, ng-view, ng-repeat, and ng-include), or bind an existing scope to
the view (for example ng-click, ng-class, and ng-show). Then, Angular invokes
the controller function, followed by the link function on the directive definition
object passing in the appropriate scope and some other relevant parameters.

Since the scope linking only happens at the link phase, we cannot
access the scope in the directive compile function, which is
evident even from the parameters passed to compile; there is no
parameter scope there.

The role of the controller function will be discussed in the following sections, but
most directives use the link function to implement the core directive behavior. This
stands true for each of the directives we have discussed. This is where we register
DOM event handlers, alter directive scope, or set up any required Angular watch.

The reason to break the overall process into compile and link phase is due to
performance optimization. For directives such as ng-repeat, the inner HTML of the
directive is compiled once. Linking happens for each ng-repeat iteration, where
Angular clones the compiled view and attaches a new scope to it before injecting it
into DOM.

While defining a directive, we can use only one of the compile or link functions. If
the compile function is used, it should return a function or object:

compile: function compile(tElement, tAttrs) {
 return {
 pre: function(scope, elmement, attr, ctrl) { ... },
 post: function (scope, elmement, attr, ctrl) { ... }
 };}

Chapter 6

[301]

Or it should return this:

compile: function compile(tElement, tAttrs) {
 return function(scope, elmement, attr, ctrl) { ... }; //post link
 function
}

The bottom line is that the compile function should return a link function. This
function is invoked during the compile phase of directive execution.

Instead of implementing the compile function and returning a link function,
we can directly implement the link function (or the link object) of the directive
configuration object, as shown here:

link:function(scope, elmement, attr, ctrl) //post link function

Or we can implement this:

link: {
 pre: function preLink(scope, elmement, attr, ctrl) { ... },
 post: function postLink(scope, elmement, attr, ctrl) { ... }
}

The signature is the same as the return value of the compile function. This function
is invoked during the link phase of directive execution.

The pre and post link functions that we see on the preceding compile and link
objects allow fine-grain control over the link phase. Angular divides the link phase
execution again into the prelink and postlink phases. It invokes pre during the
prelinking and post during the postlinking phase.

If the return value of compile is a function, it is actually a postlink
function. Similarly, if the link property is a function, it is actually a
postlink function.
Stick to the postlink phase and use the link function. There is seldom a
need to use the prelink phase.

This completes our discussion on directive life cycle. The original intent of this
discussion was to understand how the priority property helped us fix the order of
execution of the link function of remote-validator. Let's continue that pursuit.

Working with Directives

[302]

The priority and multiple directives on a
single element
We now understand that directive setup goes through two phases. The compile
phase where Angular calls the compile function top-down, and the link phase where
the link function is invoked bottom-up. Wondering what happens when there are
multiple directives defined on a single element?

When multiple directives are defined on a single element, priority decides the
execution order. The directives with higher priority are compiled first and linked last.

The default priority of a directive is 0.

By setting the directive priority for remote-validator to a positive number, we
force Angular to run the directive's link function at the last. This allows us to push
our remote validator function at the end of parser pipeline, and it runs last during
validation.

The priority property is a seldom used property and
for most of our directive implementation we do not need
or want to tinker with the default order of the compile or
link function execution.

Let's add some more goodness to our remote validation, improving the overall user
experience. The plan is to implement a new directive that gives a visual clue when
remote validation happens and when it completes.

Implementing a remote validation clues
directive
The workout name's remote validation works well now, but the user does not realize
that the workout name is being validated remotely, and may be surprised when all
of a sudden a validation message appears.

We can improve the overall user experience if we can show a busy/progress indicator
every time remote validation happens. Let's build a busy-indicator directive. We plan
to build three versions of the same validator with a slightly different approach and
work our way through some new concepts in directive building.

Chapter 6

[303]

Here is what the first version busy-indicator implementation looks like:

angular.module('app').directive('busyIndicator', ['$compile', function
($compile) {
 return {
 scope: true,
 link: function (scope, element, attr) {
 var linkfn = $compile('<div><label ng-show="busy"
 class="text-info glyphicon glyphicon-refresh
 spin"></label></div>');
 element.append(linkfn(scope));
 },
 controller: ['$scope', function ($scope) {
 this.show = function () { $scope.busy = true; }
 this.hide = function () { $scope.busy = false; }
 }]
 }
}]);

Add this code to the shared/directive.js file at the end of the file. Also,
copy the updated CSS (app.css) from the folder checkpoint3 under chapter6
in the codebase.

A simple directive shows an animation when the busy property is true, and hides
it otherwise.

Setting scope:true on directive definition causes a new scope to be created when
the directive is executed and link function is called. This scope inherits from its
parent scope (prototypal inheritance).

The scope property can also take an object, in which case an isolated scope is created. We
will cover isolated scopes later in the chapter.

The reason we create a new scope for busy-indicator is because we want to
support any number of busy indicators on the page. Look at the directive definition;
it manipulates a busy flag in its controller function. If we do not create a new
scope, the busy flag gets added to the parent scope (or container scope) of the
directive. This limits our ability to add more than one busy variable as there is only
one scope. With scope set to true, every directive reference in HTML creates a new
scope and the busy flag is set on this child scope, hence avoiding any conflict.

Working with Directives

[304]

The link function here does some DOM manipulation and appends an HTML
fragment (a spinner HTML) to the element using element.append.

Any type of DOM manipulation belongs to directives. As highlighted
earlier, never reference the DOM inside controller.

The busy-indicator function of link uses the $compile service to compile the
HTML fragment before it injects the HTML fragment into the DOM. Let's look at
how the $compile service works to comprehend the link function implementation.

Angular $compile service
The AngularJS $compile service is responsible for compiling the view and linking
it to the appropriate scope. The compiling and link phase of a directive are supported
using this very service. By exposing it as a service, the framework allows us to
leverage the compile and link infrastructure as and when required.

Why would one require the $compile service?
If we want to inject dynamic HTML into the view and expect
interpolations and directives bindings for the injected HTML to work,
we need to use $compile.

The busy-indicator function of link does not append the busy indicator HTML
directly to the directive element. Instead, it uses the $compile service first to compile
the HTML fragment. This results in the creation of a link function (linkFn) for
the HTML fragment (the compile phase). The link function is then linked to the
directive scope by calling linkFn(scope) (the link phase).

In this case, the directive scope is a new child scope as we have set scope:true.
The linkFn function invocation returns a compiled + linked element that is finally
appended to the directive element.

We have manually compiled, linked, and injected a custom HTML fragment into DOM.
Without compiling and linking, the ng-show binding will not work and we will end
up with a busy indicator that is permanent visible.

When injecting dynamic HTML into DOM, use the $compile
service if the HTML contains Angular directives and
interpolations.
Content without Angular directives and interpolation can
always be injected using the ng-bind-html directive.

Chapter 6

[305]

The $compile service function can take an HTML fragment string (as shown earlier)
or a DOM element as input. We can convert the HTML fragment into DOM element
using the angular.element helper function:

var content = '<div ng-show="exp"></div>';
var template = angular.element(content);
var linkFn=$compile(template);

This covers the $compile service and how we use it to dynamically add the template
HTML inside the directive element. Things will be clearer once we integrate this
directive with the remote-validator directive. But before we start the integration,
we need to learn about the new controller function defined on the busy-indicator
definition and the role it plays in in integrating the two directives.

Directive controller function
The primary role of a directive controller function defined on a directive definition
object is to support inter-directive communication and expose an API that can be
used to control the directive from outside.

The ng-model directive is an excellent example of a directive that exposes its
controller (NgModelController). This controller has functions and properties to
manage two-way data binding behavior. The directives: remote-validator and
update-on-blur, make use of the NgModelController API too.

The controller API for busy-indicator is pretty simple. A function show is used to
start the indicator and hide is used to stop it.

Now let's integrate both these directives.

Inter-directive communication – integrating
busy-indicator and remote-validator
The integration approach here is to add the dependency of busy-indicator in
the remote-validator directive. In the link function, use the busy-indicator
controller to show or hide the indicator when remote validation happens.

Earlier in this chapter, we created two versions of the remote-
validator directive, that of pre-Angular 1.3 and Angular 1.3
versions. Both directives need to be fixed now.
Read the next section even if you are on Angular 1.3 and above. We
cover the common concepts related to both directive implementations
in the next section.

Working with Directives

[306]

Fixing remote-validator – pre-Angular 1.3
Update the remote-validator directive definition by adding another dependency
in the require property:

require: ['ngModel', '?^busyIndicator'],

The ?^ symbol implies AngularJS should search for dependency on the parent
HTML tree. If it is not found, Angular injects a null value in the link function for
the busy-indicator controller. For this dependency to work, the busy-indicator
directive should apply to the parent HTML of remote-validator.

The link function of remote-validator needs to be updated as dependencies have
changes. Update the link function implementation with the highlighted code:

link: function (scope, elm, attr, ctrls) {
 var expfn = $parse(attr["remoteValidatorFunction"]);
 var validatorName = attr["remoteValidator"];
 var modelCtrl = ctrls[0];
 var busyIndicator = ctrls[1];
 modelCtrl.$parsers.push(function (value) {
 var result = expfn(scope, { 'value': value });
 if (result.then) {
 if (busyIndicator) busyIndicator.show();
 result.then(function (data) {
 if (busyIndicator) busyIndicator.hide();
 modelCtrl.$setValidity(validatorName, true);
 }, function (error) {
 if (busyIndicator) busyIndicator.hide();
 modelCtrl.$setValidity(validatorName, false);
 });
 }
 return value;
 });

The last parameter to the directive link function is an array
of controllers, if the require property takes dependency on
multiple directives.

The link function extracts the busy-indicator controller from the ctrls array.
It then calls the show function before a remote request is made, and it calls the
hide function when the promise is resolved either to success or error. Since the
dependency is optional, we need to check for nullability of busyIndicator every
time before invocation.

Chapter 6

[307]

The last part before we can test our implementation is to add the directive to HTML.
Since the directive needs to be added to the parent of the workout name input
(as remote-validator is defined on this input), add it to the parent form-group
attribute of div:

 <div class="form-group row" ng-class="{'
 has-error':formWorkout.workoutName.$invalid}" busy-indicator="">

We can now test our implementation. Open the new workout page and enter some
text in workout name input and tab out. A nice busy indicator shows on screen that
gets cleared when the AJAX call completes! This is shown here:

Let's look at the Angular 1.3 version of the validator.

Fixing remote-validator (Angular 1.3)
As we did in the previous section, add the require property to the remote-
validator definition:

require: ['ngModel', '?^busyIndicator'],

Check the previous section to know how require works.

Update the link function implementation with the highlighted code:

link: function (scope, elm, attr, ctrls) {
 var expfn = $parse(attr["remoteValidatorFunction"]);
 var validatorName = attr["remoteValidator"];
 var ngModelCtrl = ctrls[0];
 var busyIndicator = ctrls[1];

 ngModelCtrl.$asyncValidators[validatorName] = function (value) {
 return expfn(scope, { 'value': value });
 }

 if (busyIndicator) {
 scope.$watch(function () { return ngModelCtrl.$pending; },

Working with Directives

[308]

 function (newValue) {
 if (newValue && newValue[validatorName])
 busyIndicator.show();
 else busyIndicator.hide();});
 }
}

With v1.3, we use a new ngModelController property $pending. This property
reflects the state of asynchronous validators registered with $asyncValidators.

In the preceding code, newValue is actually the
ngModelCtrl.$pending property (return value of the
watched function).

The $pending property on ngModelController is an object hash having keys of
all asynchronous validators that have a pending remote request. In the preceding
implementation, when the $pending property has the validator function key (the
same key that is used to register the validator function with the $asyncValidators
object earlier), we show the busy indicator or we hide it. Remember Angular
automatically adds this key when the asynchronous validation function is called, and
removes it once the validation promise is resolved. To verify this, just add a break
point inside the watch and look at the value of newValue.

Awesome! We now have a nice-looking textbox that does remote validation, shows
a busy indicator, updates on blur, and binds to the model all using some small and
well-defined directives. We can see how four directives: busy-indicator, remote-
validator, update-on-blur, and ng-model work together to achieve the desired
functionality. Directives are a powerful concept that applied judiciously can produce
some great results.

Another interesting thing that needs to be highlighted here is the scope setup.
Remember busy-indicator had set scope:true in its definition. This implies busy-
indicator creates a new scope, and the view scope hierarchy for the preceding
setup looks like this:

Chapter 6

[309]

Execution of busy-indicator creates a scope (005) and all the child elements of
busy-indicator use this scope. Since scope (005) inherits from the parent scope,
the children can still refer to parent scope properties for the ng-model bindings
and validation.

When a directive creates a new scope by setting scope:true, all its child
elements are now bound to the new scope. Since this scope inherits from
its parent, all existing bindings work as before.

We can run some more experiments with busy-indicator and, as described
earlier, implement the other two variations of the directive, each being better
than the last one.

Injecting HTML in the directive compile
function
The first version of directive used the link function to add an HTML fragment to
directive element. The link function first had to compile the HTML fragment
before inserting it.

We can avoid this extra compilation if we add the DOM during the compile phase,
when the compile function is called. Let's confirm it by implementing the directive
compile function for busy-indicator.

Working with Directives

[310]

Comment the link function implementation and add this compile function instead.

compile: function (element, attr) {
var busyHtml = '<div><label ng-show="busy" class = "text-info
glyphicon glyphicon-refresh spin"></label></div>';
element.append(busyHtml);
},

Refresh the new workout page and verify that the busy indicator implementation is
still intact. The busy indicator should work as it did earlier.

By moving the DOM manipulation code into the compile function, we have got rid
of the manual compilation process. Angular will now take care of compiling and
linking the dynamically injected content.

This version of busy-indicator looks better, but a one up version would be the
one that does not require any DOM manipulation. We can actually get rid of the
compile/link function for busy-indicator.

The scope hierarchy for this setup is similar to the one
defined previously.

Let's work on the third version of this directive.

Understanding directive templates and
transclude
Directive templates allow directives to embed their own markup as part of
directive execution. Our first directive workout-tile used such a template. A
template can either be provided in-line using property template or can come from
a remote server/script block using the templateUrl configuration. Interestingly,
busy-indicator too has a template. In the previous implementations, we have
injected the template HTML manually inside the compile/link functions.

Chapter 6

[311]

Let's update the busy-indicator directive with its own template. Update the
directive definition and add the property template to it definition:

template: '<div><label ng-show="busy" class="text-info glyphicon
 glyphicon-refresh spin"></label></div>',

Now go ahead and remove the link or compile function from the directive. Refresh
the workout builder page. Surprise, surprise… the label name and workout name
input disappear! We can view the source and verify that the directive template has
replaced the complete the inner HTML of div on which it was declared.

If we think about this behavior it makes sense, the directive had a template and it
applied the template on the HTML element it was declared. But in this case, that
element had child elements that we did not take into account.

How can we fix this? Well, we need to introduce a new concept: transclusion.
Trasclusion is the process of extracting a part of DOM and making it available to a
directive so that it can be inserted at some location within the directive template.
Add a transclude property and update the property template on the directive
definition object:

transclude:true,
template: '<div><div ng-transclude=""></div><label ng-show="busy"
 class="text-info glyphicon glyphicon-refresh
 spin"></label></div>',

Refresh the page again, but this time the workout input appears and the directives
seem to be working as they were earlier. We can now also remove the dependency
on the $compile service as we are not using it any more. Angular is doing the
compilation for us.

Working with Directives

[312]

Run the app and open the workout detail page. The busy indicator is showing up
fine during workout name validation. To understand what is happening during
transclusion, check out the following screenshot:

The transclude:true property tells Angular to extract the inner HTML of a
directive declaration and make it available for injection. The injection location
is decided by the ng-transclude directive (also show in preceding screenshot).
When the busy-indicator directive executes, Angular pulls the inner HTML of
the directive declaration and injects it into directive template HTML wherever ng-
transclude is declared.

This injection is like creating a hole in the directive template and injecting the HTML
content from the main view into the hole. The ng-transclude directive allows us to
control where the content is injected/transcluded.

Other than a Boolean value, transclude can be an element, in which case the
complete HTML fragment on which the directive is defined is transcluded and not
just the inner HTML.

Chapter 6

[313]

An important question that we need to ask with respect to transclusive
behavior is about the scope of the transcluded element. Transcluded
HTML creates a new scope that always inherits the original parent scope
instead of a directive scope. Irrespective of whether the directive creates
a new scope or not, this allows the directive template to define new
properties on its scope but lets the transcluded content still refer the
parent scope without possibility of conflicts.

This is what the HTML and scope hierarchy looks like now:

The preceding screenshot highlights the resultant scope hierarchy once transcluded
content is inserted. The form has scope ID 004. The busy-indicator HTML has
scope ID 005 as we have configured scope:true. Finally, the scope for transcluded
content is 006. In terms of hierarchy, the busy-indicator and its transcluded
content are sibling scopes, inheriting from parent scope (004).

Transclusion and the resultant scope setup are important concepts to understand
when creating or dealing with directives that create transclusions.

To reiterate, directive and transclusion scopes are sibling scopes and the transclusion
scope always inherits from parent scope.

Check chapter6/checkpoint3 for working implementation of all
directives implemented thus far. The GitHub branch is checkpoint6.3
and the folder is trainer).

That's enough on templates and transcludes. Time to start exploring a new concept,
isolated scopes. Isolated scopes let us create truly reusable directives.

Working with Directives

[314]

Understanding directive-isolated scopes
If we consider any directive as software components, such a component needs some
input to work on, it produces some output and it may provide an API to manipulate
its state.

Inputs to directives are provided in one or more forms using directive templates, parent
scope, and dependencies on other directives.

Directive output could be behavior extension of an existing HTML element or
the generation of new HTML content. The directive API is supported through
directive controllers.

For a truly reusable component, all dependencies of a component should be
externalized and explicitly stated. When a directive is dependent upon the parent
scope for input (even when it creates a child scope), the dependency is implicit
and hard to change/replace. Another side effect of an inherited scope is that a
directive has access to the parent scope model and can manipulate it. This can lead to
unintended bugs that are difficult to debug and fix.

Directive-isolated scopes can solve this problem. As the name suggests, if a directive
is created with an isolated scope, it does not inherit from its parent scope but creates
its own isolated scope. This may not seem to be a big thing, but the consequences are
far reaching. This mechanism lets us create directives that do not have any implicit
dependency on the parent scope, hence resulting in a truly reusable component.

To create a directive with an isolated scope, we just need to set the scope property
on the directive definition object to this:

scope:{}

This statement creates a new isolated scope. Now, the scope injected into the link or
controller function is the isolated scope and can be manipulated without affecting
the directives parent scope.

The parent scope of an isolated scope is still accessible through the
$parent property defined on scope object. It's just that an isolated
scope does not inherit from its parent scope.

Chapter 6

[315]

Rarely do we create directives that are not dependent on their parent scope for some
model data. The purpose of an isolated scope is to make this dependency explicit.
The scope object notation is there for passing data to directives from the parent
scope. The directive scope object can take dependency through three mechanisms.
Consider a directive directive-one with this scope declaration:

scope: {
 prop: '@'
 data: '=',
 action: '&',
 },

This declaration defines three properties on the directive-isolated scope: prop, data,
and action; each one deriving its content from the parent scope, but in a different
manner. The symbols @, =, and & defined how the linking is set up with the
parent scope:

• @ or @attr: This binds the isolated scope property(prop) to a DOM
attribute(attr) value. If the attribute name (attr) is not provided with the
@ symbol, the compiler looks for the HTML attribute with the same name as
the directive scope property (prop in the preceding case).

Just like directives, attribute names too are normalization. A scope
property testAttribute should be declared on HTML as test-
attribute="value".

Since HTML attributes have string values, we can define interpolation on
the attribute value and the linked isolated scope property can detect and
synchronize the changes. Consider this:

<div directive-one prop="Hi {{userName}}"></div>

The following table highlights the state of HTML and isolated scope
property prop:

Parent scope HTML attribute value Isolated scope
$scope.userName="Sid"; <div prop='Hi Sid'> prop -> 'Hi Sid'

$scope. userName="Tim" <div prop='Hi Tim'> prop -> 'Hi Tim'

Working with Directives

[316]

• = or =attr: This creates a bidirectional binding between the isolated scope
property and the parent attribute value. Similar to @, if attr is not suffixed
after =, the compiler looks for the HTML attribute with the same name as the
directive scope property (data in the preceding case). The HTML attribute
value should be a property on the parent scope. Consider this:
 <div directive-one data="user"></div>

This exposes the parent scope property user on isolated scope property
data. Changes to user are reflected in data, and changes done to data are
reflected back to user.

Bidirectional bindings do not use the interpolation
symbols ({{}}) in declaration.

If the attribute value is not available on the parent scope, Angular throws an
NON_ASSIGNABLE_MODEL_EXPRESSION exception. If we want the dependency
to be optional we should use =? or =?attr.

• & or &attr: This allows us to execute an expression in the context of the
parent scope. The expression is defined as part of the HTML attribute value.
The behavior of & without the attr suffix is similar to that described earlier.
The attribute value is wrapped inside a function and assigned to an isolated
scope property (action is the preceding case). Consider this:

<div directive-one action="findUser(name)"></div>

The action property on the directive scope can invoke the parent scope
function (expression) by calling $scope.action({name:'sid'}).
See how the parameter name is passed on the action function invocation.
Instead of directly passing name, it is wrapped inside an object.

Each of the techniques to link the parent scope and isolated scope has its relevance.
Let's create another directive for Personal Trainer and utilize isolated scopes.

Creating the AJAX button directive
When we save/update exercise, there is always a possibility of duplicate submission
(duplicate POST requests). The current implementation does not provide any
feedback as to when the save/update operations started and when they completed.
The user of an app can knowingly or unknowingly click the save button multiple
times due to a lack of visual clues.

Chapter 6

[317]

Let's create an AJAX button that gives some visual clues when clicked and also stops
duplicate AJAX submissions.

This ajax-button directive will create an isolated scope, with parameters onClick
and submitting. Here we have it expounded:

• onClick: Like ng-click, this allows the user to specify the function to call
for on AJAX submit. If the function returns a promise, we use the promise
to show/hide the busy indicator as we did while integrating the busy-
indicator and remote-validator directives.

• submitting: This property gives the parent scope control over when
to show/hide the busy indicator. The parent scope should set
submitting = true before AJAX request is made and set it to
false once the request completes.

The submitting property is an optional property. In case, the
onClick function does not return a promise, submitting should be
used to signal completion of the AJAX request.

During the busy state, the ajax-button object appears disabled to avoid
duplicate submission.

Let's now look at some code. Add the following ajax-button directive definition to
shared/directives.js:

angular.module('app').directive('ajaxButton', ['$compile', '$animate',
function ($compile, $animate) {
 return {
 transclude: true,
 restrict: 'E',
 scope: { onClick: '&', submitting: '@' },
 replace: true,
 template: '<button ng-disabled="busy"><span class="glyphicon
glyphicon-refresh spin" ng-show="busy"><span ng-
transclude=""></button>',
 link: function (scope, element, attr) {
 if (attr.submitting !== undefined &&
attr.submitting != null) {
 attr.$observe("submitting", function (value) {
 if (value) scope.busy = JSON.parse(value); });
 }
 if (attr.onClick) {
 element.on('click', function (event) {
 scope.$apply(function () {
 var result = scope.onClick();

Working with Directives

[318]

 if (attr.submitting !== undefined &&
 attr.submitting != null) return;
 if (result.finally) {
 scope.busy = true;
 result.finally(function () {
 scope.busy = false });
 }
 });
 });
 }
 }
 }
}]);

The directive implementation creates an isolated scope with a function binding using
the onClick property and an attribute binding with submitting. It also sets the
directive property replace:true.

For directives that have their own template, the standard behavior
is to insert the template as inner HTML on the element where a
directive is declared. To change this behavior, use the directive
property replace. If set to true, it replaces the directive DOM
element with template content instead of replacing the inner
HTML. All the attributes of the original directive element are
copied onto the template HTML.
An important note here: replace has been deprecated in recent
versions of Angular. To implement the directive without replace
will require us to manually implement the attribute copying
behavior of replace and handle the original button styles.

Before we look at how the directive works and understands its link function
implementation, let's try to apply the directive to workout builder HTML.
Open the workout.html file under workoutbuilder, and update the existing
Save button HTML by changing the button tag to ajax-button and rename
ng-click to on-click:

<ajax-button ... on-click="save()" ... >Save</ajax-button>

Chapter 6

[319]

Open the workout edit page by double-clicking on any existing the workout in
workout list page. If your ajax-button HTML references popover directive too, the
workout builder page fails to load. The browser console log clearly states this error:

Error: [$compile:multidir] Multiple directives [ajaxButton,
 popover] asking for new/isolated scope on: <button …

One of the oddities of isolated scopes is that two directives declared on the same
element cannot both ask for an isolated scope. Isolated scopes are there to support
truly reusable components, which mostly come with their own template and scope
and can be use anywhere, hence it makes sense that they control the DOM element
that they are applied to.

To break this stalemate, we can move the popover directive inside the ajax-button
directive; with transclusion enabled, the popover works inside the ajax-button
directive. Change the ajax-button html to make popover directive a child of
ajax-button:

<ajax-button class="btn pull-right has-spinner active"
ng-class= "{'btn-default':formWorkout.$valid,'btn-warning':!
 formWorkout.$valid}" on-click="save()">
 <span popover="{{formWorkout.$invalid ? 'The form has errors.'
: null}}" popover-trigger="mouseenter">Save
</ajax-button>

Since the transcluded content is always bound to the
original parent scope, the popover directive above can still
can access the formWorkout.$valid property defined on
the parent scope.

The directive integration is still incomplete. Linking the ajax-button scope with the
parent scope using either the on-click or submitting properties is pending. Let's
see the current implementation of save in WorkoutDetailController:

$scope.save = function () {
 $scope.submitted = true; // Will force validations
 if ($scope.formWorkout.$invalid) return;
 WorkoutBuilderService.save().then(function (workout) {
 ...
 $scope.submitted = false;

Working with Directives

[320]

For ajax-button, we can depend either on the $scope.submitted property as it is
set to true before the AJAX call or false when the call is complete. Alternatively,
we can do a return on the line that calls the WorkoutService save function, as the
then function returns a promise, something like this:

return WorkoutBuilderService.save().then(function (workout) {

Both the approaches work as we have designed the directive to support
these scenarios.

To use the submitting attribute-based linking, just add this attribute to the ajax-
button HTML tag:

submitting = "{{submitted}}"

Now create a new workout or open an existing workout and click on Save.
There should be a busy indicator and the button remains disabled until the
AJAX call completes:

This is how attribute (@) based linking works. When we change the value of
submitted in the save function, the submitting attribute value is updated and
so is the isolated scope property submitting. The link function implementation is
as follows:

attr.$observe("submitting", function (value) {
 if (value) scope.busy = JSON.parse(value); });

It registers an attribute watch over a scope property submitting using the
attr.$observe function. This function looks similar to scope.$watch that
we have used already.

Whenever the submitting attribute changes, this watch is triggered with the new
value. The watch callback implementation requires JSON.parse because value is
always string and we need to convert it to Boolean for the busy flag.

The job of the busy flag is to control when the button is disabled and when the busy
spinner is shown.

Chapter 6

[321]

The ajax-button template binds the busy flag to both the ng-
disabled and ng-show directives. Strangely enough, ng-show can
correctly parse true and false values but ng-disabled treats both
as strings, equivalent to Boolean true. Because of this behavior we
need to introduce the busy flag in the directive scope instead of using
the submitting flag directly.

Since most of the action is happening on the link function, let's quickly go through
how the function works.

The first part of the function sets up a watch on the submitting attribute, if it is
defined. Then an event handler for click event is attached to the button element.

When the button is clicked, the event handler code invokes the onClick function,
which internally executes the function save() in context of parent scope.

If the submitting attribute is defined on the directive, the code returns. In such
a case, showing/hiding the busy indicator is taken care of by the submitting
interpolation and the attr.observe watch setup earlier in the function.

If submitting is not defined and the onClick invocation returns a promise, the
directive set the busy flag and wait for the response using the Promise API finally
function, where it resets the busy flag.

The complete event handler code is wrapped inside scope.$apply, as the context in
which the click event is fired is outside of Angular.

This is how we implement a fully functional ajax-button directive that can show a
progress indicator and stop duplicate submission.

A working implementation for the directives covered so far is
available in chapter6/checkpoint4. The GitHub branch is
checkpoint6.4 and the folder is trainer.

With this, we have covered almost all facets of directive development. Before we
conclude the chapter, there is one more big ticket item that needs our attention.
Integration between AngularJS and jQuery!

Working with Directives

[322]

AngularJS jQuery integration
If you are a web stack developer, you know jQuery is omnipresent. jQuery has
a vibrant community and plethora of plugins that can be readily used in any
JavaScript-based implementation.

Angular is in a different league! In AngularJS, we don't directly work on DOM. The
only place DOM manipulations are acceptable is within directives. In fact, as we saw
earlier, the parameter element to the directive compile and link function is a jQuery/
jqLite object that can be manipulated as the standard jQuery element.

Anyone from a jQuery background will have two major challenges when trying to
adopt AngularJS:

• How to think and design the Angular way?
• How to integrate something written in jQuery into Angular?

The first challenge is a mindset change, a paradigm shift. With frameworks such as
jQuery, we work at DOM level whereas with AngularJS we work with models and
controllers that require no DOM manipulation.

Here are some pointers that can help us think the Angular way if we have a
jQuery background:

• AngularJS is a framework, jQuery is a library: Angular is just not a DOM
manipulation library nor is it a templating / data-binding engine. It's is a
full-fledged single-page application (SPA) framework that comes with its
own set of constructs and requires us to design and layout components in a
specific way. It is not a generic utility belt like jQuery.

• Model drives the view: Another stark contrast to jQuery development is
that it is the model and controller that drive the view. We don't write code to
create/update DOM, we write code to mutate model and let the view react to
it. The app design and implementation revolves around designing the model
and controller to support a view.

• Stop thinking in terms of the selector: Most of the jQuery implementation
involves CSS selector-based operation. Select an element or collection of
elements and perform operation. Adding an item to a collection, removing an
item from a collection, and manipulating the collection item are all we do in
jQuery. Our mind is tuned to think in terms of selectors when working with
jQuery. Whereas if we look back at the sample apps that we have built over
the last few chapters, we have never thought of DOM elements, selectors, or
things like that—at least not in a direct manner.

Chapter 6

[323]

• It's not about DOM manipulation: With jQuery, the focus is on the view
and how to manipulate it to achieve the desired results. It's all about DOM
manipulations using CSS selectors. With Angular, the focus shifts to model,
controller, and the desired behavior. The thought process is never like "Let
me add/remove this div to HTML when a user clicks this button".

• Views are declarative: With jQuery development, the concept of unobtrusive
JavaScript became popular. The unobtrusive way dictates that view and view
behavior should be separated. The HTML should not have any JavaScript
code references keeping the separation intact. This was easily achievable with
jQuery and everyone embraced this separation.
But Angular took a step back. Angular views do seem to have expressions
(JavaScript code). Since AngularJS uses the declarative approach, views
contain directives expression and interpolations. This helps us to easily predict
the view behavior without constantly checking the implementation. Also,
AngularJS expressions unlike JavaScript expressions are evaluated always
in the context of a scope. As long as we can keep our expression small and
move anything complex into a controller function, the AngularJS views are
always manageable.

• Data-binding is awesome, embrace it: The templating and live data-binding
feature of Angular alone makes it worth using. We have already seen how
data-binding infrastructure can reduce the amount of boilerplate code we
write. This reduction is substantial if we have a large jQuery codebase.

• Directives replace plugins: Both plugins and directives extend the
underlying library/framework. Their mechanism for doing this may differ.
Directives are the only place where DOM manipulations are done.

• Avoid mixing both worlds: The best advice that I can give to a jQuery
developer is to drop jQuery altogether when developing with Angular. Don't
even include it in the script reference! The only reason for the existence of
jQuery script reference could be to support some jQuery plugin.

Hope these pointers together with the apps we have built using Angular provide
enough guidance for anyone from a jQuery background to build apps the
Angular way.

There is a truck load of information available on this topic on this
SO post http://stackoverflow.com/questions/14994391/
how-do-i-think-in-angularjs-if-i-have-a-jquery-
background. It is highly recommended!

Working with Directives

[324]

When compared to jQuery, Angular is a new entry and hence there are still a number
of popular jQuery plugins that may not have their Angular counterpart. We may
face situations many times where we want to utilize a jQuery plugin in an Angular
solution. We then have two options:

• Either rewrite the plugin using AngularJS directives: A time consuming
and hard option but a cleaner approach. angular-ui (http://angular-ui.
github.io/) is a great example of this. The angular-ui ports all the Bootstrap
JavaScript components (http://getbootstrap.com/javascript/) to a
native Angular implementation.

• Create a wrapper directive over the jQuery plugin: This can be a viable
solution depending on the complexity of the plugin and nature of DOM
manipulation the plugin does. Remember the underlying infrastructure
of Angular too does some DOM trickery while compiling, linking, during
template generation, and event binding. There can always be issues with
jQuery and Angular conflicting with each other.

Let's take up an exercise to integrate a jQuery plugin into Angular and understand
how it is done.

Integrating the Carousel jQuery plugin with
Workout Runner
In the Workout Runner page when a workout is in progress, the current exercise
image is displayed in the center of the page, and it updates as Workout Runner cycles
through the exercises in the workout. Imagine you saw the Owl Carousel jQuery
plugin (http://owlgraphic.com/owlcarousel/) and fell in love with it and want
to integrate this carousel for image transition in workout runner app. Well, that is
what we are going to do.

To integrate Owl Carousel, we first need to understand how the plugin works.
The Owl carousel works on any DOM element with a single parent and multiple
children. When the carousel is applied on a parent DOM element, it cycles through
its child elements and show them one or more at a time.

Clearly, the current approach of swapping the image URL for the single img tag
will not work. The carousel requires all the child elements to be available before
cycling begins.

http://angular-ui.github.io/
http://angular-ui.github.io/
http://getbootstrap.com/javascript/)
http://owlgraphic.com/owlcarousel/

Chapter 6

[325]

This is true at least for basic usage. I have not explored advance usage
of Owl Carousel, which may provide a mechanism to keep a single
child DOM element and still support transitions.

With this understanding in place, our action plan is as follows:

1. Create a model array of image URLs.
2. Update the workout runner view, replacing the single image tag with

multiple img tags generated using ng-repeat on the previous model array.
3. Apply the owl-carousal directive on the parent element of ng-repeat.
4. Implement the directive owl-carousal and in the link function, apply the

jQuery plugin on the html element.
5. On exercise transition, swap images using the Owl Carousal API.

The first thing that we need to do is to update 7minworkout/workout.js with the
implementation to generate an array of image path.

Add the function fillImages to the WorkoutController implementation:

var fillImages = function () {
 $scope.exerciseImages = [];
 angular.forEach($scope.workoutPlan.exercises,
 function (exercise, index)
 {
 $scope.exerciseImages.push(exercise.details.image);
 if (index < $scope.workoutPlan.exercises.length - 1)
$scope.exerciseImages.push("img/rest.png");
 });
}

Add the fillImages invocation to the startWorkout function just before the
startExercise call:

fillImages();
startExercise($scope.workoutPlan.exercises[0]);

The fillImages implementation fills the scope variable exerciseImages with
the workout exercise images and interleaves the rest image between two
consecutive exercises.

Next, update the index.html file with the Owl script and style references. Since Owl
is dependent on jQuery, it also needs to be added.

Working with Directives

[326]

Instead of doing this manually, copy index.html from the companion codebase
checkpoint5/app/index.html and update your local copy.

By adding jQuery before Angular, we are forcing AngularJS to
use jQuery as its primary DOM manipulation library instead
of using jqLite. If Angular loads before jQuery, it will load and
use jqLite.

Once we have the owl reference added to index.html, we can implement our
directive. Add this directive to the directives.js file under shared:

angular.module('app').directive('owlCarousel', ['$compile',
'$timeout', function ($compile, $timeout) {
 var owl = null;
 return {
 scope: { options: '=', source: '='},
 link: function (scope, element, attr) {
 var defaultOptions =
 { singleItem: true, pagination: false };
 if (scope.options)
 angular.extend(defaultOptions, scope.options);
 scope.$watch("source", function (newValue) {
 if (newValue) {
 $timeout(function () {
 owl = element.owlCarousel(defaultOptions);
 }, 0);
 }
 });
 },
 controller: ['$scope', '$attrs', function ($scope, $attrs) {
 if ($attrs.owlCarousel)
 $scope.$parent[$attrs.owlCarousel] = this;
 this.next = function () { owl.trigger('owl.next'); };
 this.previous = function () { owl.trigger('owl.prev'); };
 }]
 };
}]);

Chapter 6

[327]

Update the workout.html file under workout to integrate the directive.
Replace the line:

<img class="img-responsive"
 src="{{currentExercise.details.image}}" />

With the following lines:

<div owl-carousel="carousel" options="carouselOptions"
 source="exerciseImages">
 <img class="img-responsive" ng-src="{{image}}"
 ng-repeat="image in exerciseImages track by $index" />
</div>

Since we will not use auto transition functionality of Owl Carousel, we need to
manually cycle these images. The WorkoutController function will cycle the images
when the exercise changes (using the owl-carousel directive controller). Update the
promise callback inside the startExerciseTimeTracking function by calling the
carousel.next function just before the startExercise call:

if (next) {

$scope.carousel.next();

 startExercise(next);

}

We can now verify our implementation by starting a workout. If things are set up
correctly, the image transition will now be done by the Owl plugin and controlled by
the WorkoutController controller (using the owl-carousel directive controller).

We have built enough directives now to easily comprehend what is happening in
the owl-carousel directive. But let's still go through some important parts of the
directive and understand how the directive works.

Similar to the ajax-button directive, this directive too uses an isolated scope. This is
what the HTML declaration specific to Owl Carousel looks like:

<div owl-carousel="carousel" options="carouselOptions"
 source="exerciseImages">

Working with Directives

[328]

This time we use the = based attribute bindings. This allows us to support two-way
binding between the parent scope object and the directive isolated scope. The following
screenshot highlights this linkage:

Let's now look at how this directive works. The directive link function firstly uses
the options scope variable (bound to the parent scope carouselOptions) to set up
the Owl plugin. It initializes some default value for the Owl plugin ({ singleItem:
true, pagination: false };) and then extends it with the values that are passed
through the options property.

Then a watch over source (bound to exerciseImages) is created to observe when the
images data is available. Remember that the exercise details are retrieved from the
server; therefore, the directive need to make sure that image data is available before
the Owl carousel is executed on the HTML element.

The call to the Owl plugin is wrapped inside a $timeout callback because, not only
do we want to make sure that the data is available but also that the ng-repeat
has done its job before we run the plugin. By using $timeout, we delay the plugin
execution to the next digest cycle by the time the ng-repeat has generated the
required html.

The directive controller implementation exposes the directive API using two
functions, namely next and previous. Internally, these functions invoke the Owl
plugin and transition the element forward or backward. We also expose the directive
controller on the parent scope by calling:

$scope.$parent[$attrs.owlCarousel] = this;

This allows WorkoutController to manipulate the carousel and move it forward
when an exercise is complete ($scope.carousel.next();).

Chapter 6

[329]

When working with jQuery plugins, another common requirement is to wrap plugin
events and make them available as directive function binding (the scope property
with &). Owl Carousel too has some events that we can bind in Angular. Let's try to
integrate one such event in the existing owl-Carousel directive.

Tunneling jQuery events with directives
Tunneling jQuery events into the Angular world is translating any JavaScript/
jQuery based event into an AngularJS expression invocation, mostly a function call.
Event ng-click implementation is a tunneling of the DOM click event.

The Owl Carousel plugin has an event/callback afterAction that is invoked when
the plugin initializes or transitions elements forward or backward. If our directive can
subscribe to this event, we can translate/tunnel the call to an expression invocation in
Angular world. We can use the & attribute based binding to achieve this.

To start with, update the directive definition object for owl-carousel and add a new
property opUpdate on scope declaration:

onUpdate:'&'

Also, update the defaultOptions object by adding another property afterAction:

afterAction: function () {
var itemIndex = this.currentItem;
scope.$evalAsync(function () {
scope.onUpdate({ currentItemIndex: itemIndex });
})

}

The afterAction function is an Owl plugin callback function. When the function is
invoked, this refers to the Owl plugin. currentItem is the index of current item in
the Owl element array. The scope.$evalAsync service wraps the call to the linked
scope function.

Working with Directives

[330]

The invocation of an Angular expression onUpdate requires a
scope.$apply wrapper callback if invoked directly by the jQuery
plugin, else Angular will not be able to detect model changes done in the
invoked controller function.
In the case of owl-carousal, the callback is fire when the plugin
is initialized and when $scope.carousel.next(); is called in
WorkoutController. The second type of invocation does not require
the scope.$apply wrapper but first one does. Due to this conflicting
requirement, we wrap the call inside scope.$evalAsync. $evalAsync
makes sure that the expression is executed correctly in the next Angular
digest cycle.

We can now update the directive declaration on html to use the onUpdate linking:

<div owl-carousel= ... on-update="imageUpdated(currentItemIndex)">

Finally, the bound function imageUpdated needs to be implemented. Since there is
not specific need to track this event for workout runner we do some basic console.
log and print the current image. Add this to WorkoutController:

$scope.imageUpdated = function (imageIndex) {
 console.log($scope.exerciseImages[imageIndex]);
};

With this, we have successfully tunnelled the afterAction event of Owl Carousel
to directive's onUpdate—a translation from the jQuery plugin world to the
AngularJS world.

Any jQuery—Angular integration boils down to tunneling events
from jQuery to Angular and wrapping jQuery plugins access into
AngularJS directives.

The owl-carousel directive implementation is a very thin wrapper over the actual
plugin. It has been designed specifically to support our workout scenario. It neither
has been tested nor supports all carousel scenarios. Creating a complete wrapper is
a lengthy and tedious exercise where we need to test all the carousel options, expose
its API using directive controller, decide what happens when the user changes the
options or underlying data is updated and make sure directive execution (hence
plugin execution) happens at the correct time.

This also concludes the implementation for our last directive in this chapter. We
should now have a better understanding of how directives work and how to create
our own directives.

Chapter 6

[331]

Chapter6/checkpoint5 contains a working implementation for
all the directive we have covered in this chapter. The GitHub branch is
checkpoint6.5 and the folder is trainer)

Building a directive is not a simple exercise, unless we are building something very
simple. It not only requires us to understand the multitude of options that directive
definition object provides but also other facets of the AngularJS framework such as
compile and link phase, scopes, watches, and some others. The more directives we build
more we get comfortable with the overall concept and its implementations.

Since directives are components that can be used across all views they need to be
designed and implemented with reusability in mind. Before we close the chapter,
here are some guidelines that will help us in building our own directives with the
above goal:

• Keep it small: Small is beautiful and small is easy to reuse. Keep your
directive implementation small. All the framework directives are small with
well-defined functionality. The directives that we have created too are small
and implementation simple.

• Implement one behavior and implement it well: The directive should do
one thing and should do it well. Again the framework directives are small
and serve a specific purpose. Small and well-defined directives are far more
easy to consume compared to a directive that provides a diverse range of
features, not all useful in every scenario.

• Directive composition is a powerful concept: We have seen this already,
when we integrated remote-validator, busy-indicator, ng-model and
update-on-blur together while building remote validation for a workout
name. Small and well defined directives can be combined to achieve some
great results.

• Prefer isolated scope when creating a component directive: To create a
true component, we need to use an isolated scope and make dependencies
explicit. Anyone integrating a directive can just look at the isolated scope
definition and know what parent scope properties/functions are required by
the directive.

• Minimize dependency on a parent scope: One way to do this is to create an
isolated scope. Using a parent scope or inheriting a parent scope in directives
can have unintended consequences. Such directives may access and
manipulate any parent scope data; hence, creating a dependency that is hard
to alter. This also reduces the overall reusability of the directive as we always
need to make sure the same model properties are present on the parent scope
wherever the directive is utilized, which may not always be possible.

Working with Directives

[332]

• Directives with an isolated scope have limitations: In Angular, two
directives cannot create an isolated scope on the same element. Keep this in
mind while designing directives with isolated scope.

• DOM manipulation belongs to a directive: The only place we should
interact with DOM is inside a directive. Our model and controllers should be
devoid of any DOM access for read or for write.

It's time now to conclude the chapter and list out our learning in the summary section.

Summary
In this chapter, we covered almost all aspects of directive building. We built all sorts
of directives, from the trivial ones to the seemingly more complex ones. We created
directives that just extended behavior and ones that came with their own template
and behavior.

You learned how the complete directive configuration can be controlled by a
directive definition object.

When building directives, we explored the compile and link phase of directive
execution. Together with controller function, the compile and link function
provide extension points to implement directive behavior.

We also covered two interesting services the $compile and $parse service. We
utilized $compile to compile dynamic html fragments and the $parse service to
evaluate AngularJS expression.

You learned how a directive can control scope creation using the scope property.
We also created directives with isolated scope that allow us create really reusable
components in AngularJS.

Finally, we looked at some integration techniques to integrate jQuery plugins
with AngularJS.

We now have a good understanding of how directives work and how to build our
own directives. The next chapter focusses on testing AngularJS code. AngularJS was
created with testability in mind and we employ this framework characteristic to
build some test suites for our Personal Trainer and Workout Runner apps.

Testing the AngularJS App
Unless you are a superhero who codes, you need to test what you build. Also, unless
you have loads of free time to test your application again and again, you need some
test automation.

When we say Angular was built with testability in mind, we really mean it. It has
a strong dependency injection (DI) framework, some good mock constructs, and
awesome tools that make testing in an Angular app a fruitful endeavor.

This chapter is all about testing and is dedicated to testing what we have built over
the course of this book. We test everything from controllers to filters, services, and
our app directives.

The topics we cover in this chapter include:

• Understanding the big picture: We will try to understand how testing fits in
the overall context of Angular app development. We will also discuss types
of testing Angular supports, including unit and end-to-end (E2E) testing.

• Overview of tools and framework: We cover the tools and frameworks that
help in both unit and end-to-end testing with Angular. These include Karma
and Protractor.

• Writing unit tests: You will learn how to do unit testing with Angular using
Jasmine and Karma inside a browser. We will unit test what we have built
in the last few chapters. This section also teaches us how to unit test various
Angular constructs, including filters, controllers, services, and directives.

• Creating end-to-end tests: Automated end-to-end tests work by mimicking
the behavior of the actual user through browser automation. You will learn
how to use Protractor combined with WebDriver to perform end-to-end
testing.

Let the testing begin.

Testing the AngularJS App

[334]

The need for automation
The size and complexity of apps being built for the Web are growing with each
passing day. The plethora of options that we have now to build web apps is just
mind-boggling. Add to that the fact the release cycles for products/apps have
shrunk drastically from months to days or even multiple releases per day! This
puts a lot of burden on software testing. There is too much to be tested. Multiple
browsers, multiple clients and screen sizes (desktop and mobile), multiple resolution,
and things like that.

To be effective in such a diverse landscape, automation is the key. Automate
everything that can be automated should be our mantra.

Testing in AngularJS
The Angular team realized the importance of testability and hence created a
framework that allowed easy testing (automated) for apps built on it. The design
choice of using DI construct to inject dependencies everywhere helped. This will
become clear as the chapter progresses and we build a number of tests for our apps.
However, before that, let's understand the types of testing that we target when
building apps on this platform.

Types of testing
There are broadly two forms of testing that we do for a typical AngularJS app:

• Unit testing: Unit testing is all about testing a component in isolation to
verify the correctness of its behavior. Most of the dependencies of the
component under test need to be replaced with mock implementations to
make sure the unit tests do not fail due to failure in a dependent component.

• End-to-end testing: This type of testing is all about executing the application
like a real end user and verifying the behavior of the application. Unlike
unit testing, components are not tested in isolation. Tests are done against a
running system in real browsers and assertions are done based on the state
of the user interface and the content displayed.

Unit testing is the first line of defense against bugs and we should be able to iron out
most of the issues with code while unit testing. But unless E2E is done, we cannot
confirm whether the software is working correctly. Only when all the components
within a system interact in the desired manner can we confirm that the software
works—hence, E2E testing becomes a necessity.

Who writes unit and E2E tests and when are they written are important questions
to answer.

Chapter 7

[335]

Testing who and when
Traditionally, E2E testing was done by the Quality Assurance (QA) team and
developers were responsible for unit testing their code before submitting. The
developers too did some amount of E2E testing but the overall E2E testing process
was manual.

With the changing landscape, modern testing tools especially on the web front have
allowed developers to write automated E2E tests themselves and execute them
against any deployment setup (such as development/stage/production). Tools such
as Selenium together with WebDrivers allow easy browser automation, thus making
it easy to write and execute E2E tests against real web browsers.

A good time to write E2E scenario tests is when the development is complete and
ready to be deployed.

When it comes to unit testing, there are different schools of thought around when a
test should be written. TDDer writes tests before the functionality is implemented.
Others write tests when the implementation is complete to confirm the behavior.
Some write while developing the component itself. Choose a style that suits you,
keeping in mind that the earlier you write your tests, the better.

I am not going to give any recommendation, nor am I going to get into
an argument over which one is better. Any amount of unit tests is better
than nothing.
My personal preference is to use the middle approach. With TDD, I feel
test creation effort at times is lost as the specification/requirements
change. Tests written at the start are prone to constant fixes as the
requirement changes.
The problem with writing unit tests at the end is that our target is to
create tests that pass according to the current implementation. The tests
that are written are retrofitted to test the implementation whereas they
should test the specifications.
Adding tests somewhere in the middle works best for me.

Let's now try to understand the tooling and technology landscape available for
AngularJS testing.

Testing the AngularJS App

[336]

The AngularJS testing ecosystem
Look at the following diagram to understand the tools and frameworks that are
there to support AngularJS testing:

As we can see, we write our tests using unit testing libraries such as Jasmine or
Mocha. These tests are either executed by Karma or Protractor, depending upon
whether we are writing unit or integration tests. These test runners in turn run
these tests in a browser such as Chrome, Firefox, IE, or headless browsers such
as PhantomJS. It is important to highlight that not only E2E but unit tests too are
executed in a real browser.

Except for browsers, the complete AngularJS testing setup is
supported by the awesome libraries and framework made available
through the Node.js ecosystem. Some libraries such as Jasmine have
standalone versions too but we will stick to Node.js packages.

All the tests in this chapter are written using Jasmine (both unit and integration
tests). Karma will be our test runner for unit tests and Protractor for E2E tests.

Chapter 7

[337]

Getting started with unit testing
The ultimate aim of unit testing is to test a specific piece of code/component in
isolation to make sure that components work according to specification. This reduces
the chances of failures/bugs in the component when integrated with other parts of
the software. Before we start writing tests, there are some guidelines that can help us
write good and maintainable tests:

• One unit should test one behavior. For obvious reasons, testing one behavior
per unit test makes sense. A failing unit test should clearly highlight the
problem area. If multiple behaviors are tested together, a failed test requires
more probing to assert what behavior was violated.

• Dependencies in a unit test should be mocked away. Unit testing, as the
name suggests, should test the unit and not its dependencies.

• Unit tests should not change the state of the component being tested
permanently. If it does, the other tests may get affected.

• The order of execution of unit tests should be immaterial. One unit test
should not be dependent on another unit test to execute before it. This is
a sign of a brittle unit test. It may also mean that the dependencies are not
mocked.

• Unit tests should be fast. If unit tests are not fast enough, developers will not
run them. This is a good reason to mock all dependencies such as database
access, remote web service call, and others in a unit tests.

• Unit tests should try to cover all code paths. Code coverage is a metric that
can help us assess the effectiveness of unit tests. If we have covered all
positive and negative scenarios during testing, the coverage will indeed be
higher. A word of caution here: with code coverage, high code coverage does
not imply code is bug-free, but a low coverage clearly highlights lack of areas
covered in unit tests.

• Unit tests should test positive and negative scenarios. Just don't concentrate
on positive test cases; all software can fail and hence unit testing failure
scenarios are as important to test as success scenarios.

These guidelines are not framework-specific but give us enough ammunition for
writing good tests. Let's begin the process of unit testing by setting up the required
components for unit testing.

Testing the AngularJS App

[338]

Setting up Karma for unit testing
Since the complete test automation infrastructure is supported using Node,
this needs to be installed first. Follow the instructions on the Node website
(https://nodejs.org) and get Node installed locally.

Node comes with a package manager Node Package Manager (NPM) that is used
to install all other components (packages in the Node world) required for testing.

Start by installing Karma from the command line. Navigate to the root of your
application codebase (in the same folder where the app folder is located) and
install Karma using this command:

npm install karma --save-dev

To use Karma from the command line, we need to install its command-line interface:

npm install -g karma-cli

The Karma version against which the code was tested is 0.12.31. The
karma-cli version was 0.0.4.
To install a specific version of a package, suffix the package name with @
version, for example, npm install karma@0.12.31 --save-dev.

This completes Karma installation and it's time to configure the test runner.
Configuring Karma is all about setting up its configuration file that contains enough
details for it to run our scripts and test them. Create a tests folder in the root (next
to the app folder), navigate to it, and start the Karma configuration setup with the
following command:

karma init

This starts a command-line wizard that guides us through the options available,
including the test framework, folders to watch, and other such settings. Once
the wizard is complete, it generates a karma.config.js file. Instead of using the
generated configuration file, copy the karma.config.js file from the companion
codebase at chapter7/checkpoint1/tests to your local tests folder.

The karma init wizard installs some packages based on our
selection. If we skip the wizard, the packages karma-chrome-
launcher and karma-jasmine need to be installed manually
for unit testing.

Chapter 7

[339]

The Karma test runner by default uses Jasmine 1.3.x as the testing framework. We
need to update it to v2.0, as we are going to use some features from v2.0. To update
the Jasmine version used by Karma, update this package:

npm install karma-jasmine@2_0 --save-dev

The Karma configuration files contain settings that affect the tests we run. We
will not be covering each and every configuration supported by Karma here, but
will focus on configurations that are unique and/or required for our test setup.
Refer to the Karma documentation (http://karma-runner.github.io/0.8/
config/configuration-file.html) to understand more about the various Karma
configuration options.

One of the Karma configurations is the files array that references the files that
Karma will load in the browser for testing. This list contains a path to our application
script files (code that we have been building throughout the earlier chapters), as well
as a path to the test scripts we will create.

To unit test our app, the plan is to create one test (such as directives.spec.js)
file for each JavaScript file that we have in our project. This test file will contain the
unit test specification for the corresponding JavaScript component, as shown in the
following screenshot:

Karma test runner will load these test scripts together with the standard app scripts.
The files array configuration also contains a reference to the bower_components
folder for all script files that were referenced through CDN, such as app/bower_
components/angular/angular.js.

Testing the AngularJS App

[340]

To unit test our app implementation, Karma needs to load all script files referenced/
used by the app. It can load these scripts from local filesystem, or we can specify
remote URLs. However, referencing remote scripts in a unit test is never a good idea.
It just slows the overall process of unit testing as the remote scripts are downloaded
every time a test is run. We need to have a local copy of all the referenced libraries
for our tests. We use Bower for that.

Managing script dependencies with Bower
Since we are using the Node infrastructure, we do have a package (dependency)
manager for web apps: Bower. Instead of downloading every CDN dependency
manually and copying it to our app folder, we use Bower.

Install Bower from the command line using this:

npm install -g bower

Bower prerequisites are Node and Git. Git is a distributed source
control system for managing code. Check the site, http://git-
scm.com/ for instructions on how to install and configure Git for
local usage.

Copy the bower.json and .bowerrc files from chapter7/checkpoint1 into the
parent of your app folder. The bower.json file references all the CDN dependencies
used by our app. To actually download these dependencies, use the following
command:

bower update

Bower will download all the dependencies and add them to the bower_components
folder inside the app folder. The download location (bower_components) has been
configured in the .bowerrc file.

The app folder is the root of our application. Some servers do
not allow referencing files outside the root folder and hence the
Bower components (third-party scripts) should be installed inside
the app folder.

Chapter 7

[341]

With Karma installed and remote script files included using Bower, it is time to
start writing some unit tests. Before we start, just make sure that the overall folder
hierarchy setup looks something like this:

We are now all set to write unit tests for our apps.

Unit testing AngularJS components
Over the course of this book, we have built components that cover every construct
available in Angular. We have built controllers, a filter, a few services, and finally
some directives too. All of these are testable components that we will test.

Just to get the hang of unit testing with Jasmine, let's test the smallest and easiest
component first: the filters.

Unit testing filters
Filters are easiest to test as they have minimum or zero dependencies on other
constructs. The secondsToTime filter that we created for Workout Runner (the 7
Minute Workout app) has no dependency and can be easily unit tested.

Testing the AngularJS App

[342]

Look at the Jasmine framework documentation to understand how to
write unit tests using Jasmine. We use Jasmine 2.0 for our unit tests
(http://jasmine.github.io/2.0/introduction.html). Jasmine
has one of the best documentations available and the overall framework is
very intuitive to use. I strongly recommend you head over to the Jasmine
site and get yourself familiar with the framework before you proceed.

Add a filters.spec.js file to the 7minworkout folder under js and add this setup
code and unit test to it:

describe("Filters", function () {
 beforeEach(module('7minWorkout'));
 describe("secondsToTime filter", function () {
 it('should convert integer to time format',
 inject(function ($filter) {
 expect($filter("secondsToTime")(5)).toBe("00:00:05");
 expect($filter("secondsToTime")(65)).toBe("00:01:05");
 expect($filter("secondsToTime")(3610))
 .toBe("01:00:10");
 }));
 });
});

This is a simple unit test that verified whether the input integer values are correctly
converted into the hh:mm:ss format using the Jasmine assert statement, expect.

To run this test, start Karma from the command line with the following command:

karma start tests/karma.config.js

Make sure the path to the karma.config.js file is correct. If Karma is set up
correctly, this should start the test runner and automatically open one or more
browser windows to execute the tests. Karma then executes the test and logs the
results in the console. The preceding filter test should pass and the logs should
confirm this:

Chapter 7

[343]

While this unit test is simple, we need to understand how it has been set up in the
context of Angular. Other than the vocabulary that is part of the Jasmine framework
(beforeEach, it, and expect), there are two new keywords used in this test: module
and inject.

• Module: This is an Angular library function exposed on the global level that
allows us to create or load a module for unit tests. Since we are testing the
secondsToTime filter defined in the 7minWorkout module, we load this
module using the module function in beforeEach.

As the name implies, the beforeEach function is called once
before each test in the describe block is run.

• Inject: This complements module and is used to inject dependencies into
a unit test. Since no views are involved in unit testing, the standard app
bootstrapping process that allows module initialization and automatic
dependency injection does not take place. We always need to use the
inject function to inject dependencies.

In the preceding implementation, we inject the $filter service into the
it block, which in turn loads the secondsToTime filter for testing.

Module registration should happen before any inject call takes place. If
Karma console throws this error:
Error: Injector already created, can not register a
module!

It simply means the module function was invoked after an inject call.

The module and inject functions are actually part of the ngMock module that is
exclusively there to support unit testing. Let's try to understand what services this
module provides to help us with unit testing.

Unit testing using the ngMock module
The ngMock module has been created specifically to support unit testing and it
provides strong mocking capabilities. But what exactly is a mock or what is this
process of mocking?

Testing the AngularJS App

[344]

The general idea of mocking is to create a dummy implementation for a real
service/component that can be substituted for original service during unit testing
components that depend upon the original service/component. The reason behind
creating mocks or mocking dependencies is to make sure that the component under
the test does not fail due to the failure of any dependent component.

The complexity of mock implementation varies and depending
upon this complexity, a mock implementation may also be referred
to as dummy, fake, or stub. The article by Martin Fowler at http://
martinfowler.com/articles/mocksArentStubs.html is a
great read if you are interested in exploring the differences between
the mock types.

As described earlier, the module function allows us to load as well as create our own
modules on the fly. It also allows us to override any service implementation in any
module with our own custom (mock) implementation.

The ngMock module is not part of the standard framework and
hence needs to be included when we perform unit testing. Look
at the karma.config.js files property; you will see that the
angular-mock.js file has been included as a Bower package.

Interestingly, the ngMock module itself comes with mock implementations for some
of the standard AngularJS services such as $interval, $timeout, $httpBackend,
and others.

This implies that if our implementation uses any of these services,
then a mock implementation of the service is injected during unit
testing. How it helps us during unit testing will be clear as we
write more tests.

After testing the easiest part, let's unit test a component that is difficult to test: the
controller.

Unit testing controllers
Controllers in Angular integrate the view with everything else. Due to this,
controllers normally have more dependencies as compared to any of the services,
filters, or directives. Since unit testing is all about setting up the dependencies and
then performing the actual tests, there is a decent amount of effort required to set up
dependencies for controllers. We skipped the dependency setup for filter testing as it
did not have external dependencies.

Chapter 7

[345]

The controller that we plan to test in this section is WorkoutController. Located
inside js/7MinWorkout/workout.js, this is the controller that runs a specific
workout. Before we can actually test the controller implementation, its dependencies
need to be set up.

Setting up controller dependencies
WorkoutController has a total of eight dependencies:

'$scope', '$interval', '$location', 'workoutHistoryTracker',
 'appEvents', 'WorkoutService', '$routeParams', 'Exercise'

Therefore, we need to manage these eight dependencies to test WorkoutController.
Add the workout.spec.js file to the 7minworkout folder under js and now let's
first set up these dependencies. Add the following code to workout.spec.js (you
have an option to copy it from the workout.spec.js file under checkpoint1/app/
js/7minworkout/ too):

describe("Controllers", function () {
 beforeEach(module('app'));

 describe("WorkoutController", function () {
 var ctrl, $scope;
 beforeEach(inject(function ($rootScope, $controller, $interval,
$location, workoutHistoryTracker, WorkoutService, appEvents, Exercise)
{
 $scope = $rootScope.$new();
 $scope.carousel = {
 next: function () {}
 };
 ctrl = $controller('WorkoutController', {
 $scope: $scope,
 $interval: $interval,
 $location: $location,
 workoutHistoryTracker: workoutHistoryTracker,
 appEvents: appEvents,
 WorkoutService: WorkoutService,
 $routeParams: { id: "DummyWorkout" },
 Exercise: Exercise
 });
 }));
 });
});

Testing the AngularJS App

[346]

As we can see, there is good amount of initial setup required here, but this setup is
still incomplete. To know what is pending, we need to understand what has been
set up in the preceding code.

The test setup has been organized into a nested describe block as Jasmine allows
us to group multiple tests/specifications using such nested blocks. Things common
to every block can be hosted in the parent block.

In the preceding test, the parent describe block (Controllers) sets up the
module app that is required for all of the tests. The app module initialization code,
beforeEach(module('app'));, automatically initializes all dependent modules
and hence does not require us to load dependent modules explicitly.

The nested describe block (WorkoutController) is dedicated exclusively to test
WorkoutController. The first beforeEach function inside this block is there to set
up the controller dependencies.

The beforeEach method takes the inject function that is used to inject a number
of dependencies required to instantiate a controller. The first thing that the function
does is to set up a new scope required for the controller by calling $rootScope.$new.
This creates a new child scope. We keep the reference of this scope (in $scope) as we
require it later.

Since WorkoutController uses the next function of the carousel directive controller,
we mock the controller and the function. We do not use inject here as the carousel
controller is injected as part of directive execution and not through DI. This is our
first mock implementation.

The next step creates the WorkoutController instance. We use $controller to
create a controller object during unit testing. The $controller service accepts the
controller name and the required dependencies.

Most of the dependencies used in controller creation have been injected using the
inject function earlier. While we can use some of these dependencies in their
original form, we need to mock away some of them. Let's evaluate each of these
dependencies to understand what to mock:

• $scope: This will be created and injected manually, so in a way we are
already mocking it.

• $interval: This service needs mocking, and the ngMock module provides
one by default. Hence, we don't have to worry.

• $location: This can be mocked but let's ignore it for the time being.
• WorkoutHistoryTracker: This has some behavior attached, hence we

should mock it.

Chapter 7

[347]

• appEvents: This is a plain JavaScript object that we can use as it is.
• WorkoutService: This definitely needs mocking, and it loads workout data

required by WorkoutController.
• $routeParams: This already has a mock implementation ($routeParams: {

id: "DummyWorkout" }).
• Exercise: This is a model service that we can use as it is.

As it turns out, we just need to mock two services: WorkoutHistoryTracker and
WorkoutService. How? The answer is, using the module function.

Add the beforeEach block containing the mock implementation for
WorkoutHistoryTracker inside the describe block for WorkoutController, after
the variable declaration:

beforeEach(function () {
 module(function ($provide) {
 $provide.value("workoutHistoryTracker", {
 startTracking: function () {}, endTracking: function () {}
 });
 });
 });

Since the mock WorkoutService definition is lengthy, copy the complete definition
from the workout.spec.js file under chapter7/checkpoint1, and add it after the
preceding beforeEach block. The following code outlines the mock implementation:

beforeEach(module(function ($provide) {
 $provide.factory("WorkoutService", function ($q, WorkoutPlan,
 ... Exercise) {
 var mock = {};
 mock.sampleWorkout = new WorkoutPlan({
 name: "testworkout",
 title: "Test Workout",
 description: "This is a test workout",
 restBetweenExercise: "40",
 exercises: [dummy exercise data]
 });
 mock.getWorkout = function (name) {
 return $q.when(mock.sampleWorkout);
 }
 mock.totalWorkoutDuration = 180;
 return mock;
 });
 }));

Testing the AngularJS App

[348]

The preceding mock implementations are created using the Angular $provide
service.

The $provide service allows us to define services with the familiar service creation
syntax that we have already seen in the Module API (such as module.factory and
module.service). The $provide service supports all the service creation recipes,
including constant, value, service, factory, and provider.

As we can see, by registering the mock service implementation with the same
name as the original services, we allow $provide to override/hide the original
implementation from the two services.

The WorkoutHistoryTracker service mock is registered using the value recipe
and the implementation has only two empty methods: startTracking and
endTracking. Note that we have only mocked implementation for functions that
we use in WorkoutController and not the complete service. Whenever the inject
function asks for WorkoutHistoryTracker, this dummy implementation is returned.

The mock implementation for WorkoutService is simple too. The only function
that needs to be mocked is getWorkout, which returns a predefined workout. The
$q.when function helps us to return the workout data as a promise.

$q.when is a very handy function, which returns a promise. The
returned promise is resolved with the input value passed to $q.when.
This is a very handy function that allows us to create promises that
always resolve to a fixed value. Look at the $q documentation at
https://docs.angularjs.org/api/ng/service/$q to know
more about how when works.

The WorkoutService mock is implemented using the factory recipe and other than
the getWorkout, has some other properties such as totalWorkoutDuration and
sampleWorkout that will come handy during unit testing.

The $provide service provides a convenient mechanism to create mock and
override dependencies. To know more about the $provide service, refer to the
API documentation at https://code.angularjs.org/1.3.3/docs/api/auto/
object/$provide.

Now that we have addressed all the WorkoutController dependencies, we can
actually begin unit testing it.

Chapter 7

[349]

Unit testing WorkoutController
Starting from the loading of workout data to transitioning of exercises,
pausing workouts, and running exercise videos, there are number of aspects of
WorkoutController that we can test. The workout.spec.js file available in
chapter7/checkpoint1/js/7MinWorkout contains a number of unit tests that cover
the preceding scenarios. We will pick up some of those tests and work through them.

To start with, let's add a test case that verifies that the workout starts running once
the controller is loaded:

it("should start the workout", inject(function (WorkoutService) {
expect($scope.workoutPlan)
 .toEqual(WorkoutService.sampleWorkout);
 expect($scope.workoutTimeRemaining)
 .toEqual(WorkoutService.totalWorkoutDuration);
expect($scope.workoutPaused).toBeFalsy();
}));

This test asserts that if the correct workout plan is loaded in the scope, the total
duration of the workout is correct, and the workout is in the running state. Note
how we use the mock properties: sampleWorkout and totalWorkoutDuration of
WorkoutService to test the expectations.

Assuming that the autoWatch property of karma.config.js is true, saving this test
automatically triggers the test execution. But this test fails (check the Karma console).
Strange! All dependencies have been set up correctly but still the expect function of
the first it block fails as $scope.workoutPlan is undefined.

We need to debug this test.

Debugging unit tests in Karma
Debugging unit tests in Karma is easy as the tests are run in the browser. We debug
tests as we debug the standard JavaScript code.

When Karma starts, it opens the specific browser window to run the tests. To debug
any test in Karma, we just need to click on the Debug button available on the top
navigation in the browser window.

Testing the AngularJS App

[350]

There is one window opened by Karma and one when we click on
Debug; we can use the original window too for testing but the original
window is connected to Karma and does live reload. Also, the script
files in the original window are time-stamped, which changes any time
we update the test, and hence requires us to put in a breakpoint again
to test.

Once we click on Debug, a new tab/window opens that has all the tests and other
app scripts loaded for testing. These are scripts that were defined during Karma
configuration setup in the karma.config.js files section.

To debug the preceding failure, we need to add breakpoints at two locations. One
should be added inside the test itself, and the second one inside WorkoutController
where it loads the workout and assigns the data to appropriate scope variables.

Perform the following steps to add a breakpoint in Google Chrome:

1. Open the Karma debug window/tab by clicking on the Debug button on the
window loaded by Karma when it started.

2. Press the F12 key to open the developer console.
3. Go to the Source tab and the files will be located in the app folder.
4. We can now put breakpoints at the required locations just by clicking on

the line number. This is the standard mechanism to debug any script. Add
breakpoints at the locations highlighted here:

Chapter 7

[351]

Refresh the Debug page (the one we opened when we clicked on the Debug button).
The breakpoint in workout.js is never hit, causing the test to fail.

The reason for the failure is easy to guess. Workout data is attached to the scope only
after the promise callback from getWorkout is resolved, an asynchronous process. By
that time, the test execution is complete.

To fix this issue, we need to execute the AngularJS digest cycle explicitly before
doing any assertions (expect). We can do this by calling either $scope.$digest()
or the $scope.$apply() function. Add the $scope.$digest(); statement to
the beforeEach block containing the controller declaration at the end. By adding
$scope.$digest in beforeEach, we make sure the digest cycle is invoked after
WorkoutController is created and before the test starts.

If you are working with asynchronous code, remember to call
$scope.$digest or $scope.$apply() before any expect
statement.

The new test should pass now.

As the number of tests grows, unit testing may require us to concentrate on a
specific test or a specific suite of tests. Karma allows us to target one or more tests by
prepending i to existing it block, that is, it become iit. If Karma finds tests with
iit, it only executes those tests. Similarly, a specific test suite can be targeted by
prepending d to the existing describe block, ddescribe.

Another handy tip that can help us with debugging is the $log service (https://
code.angularjs.org/1.3.3/docs/api/ng/service/$log) or the console.log
function. Any datum logged using these two functions shows up in the Karma console.

Let's continue unit testing the controller!

Unit testing WorkoutController continued...
What other interesting thing can we test? We can test whether the first exercise
started. Add this test to workout.spec.js after the one we just added:

it("should start the first exercise", inject(function
 (WorkoutService, appEvents) {
expect($scope.currentExercise)
.toEqual(WorkoutService.sampleWorkout.exercises[0]);
expect($scope.currentExerciseIndex).toEqual(0);
 expect($scope.$emit).toHaveBeenCalledWith(
 appEvents.workout.exerciseStarted,
 WorkoutService.sampleWorkout.exercises[0].details);
}));

Testing the AngularJS App

[352]

The last expect function in this test is interesting. It uses a Jasmine feature: spies.
Spies are there to help us verify dependency invocations.

Using Jasmine spies to verify dependencies
We mock a dependency to make sure that the dependency does not adversely
affect the component under test. But from a unit testing perspective, we still need
to make sure these dependencies are called by the component being tested at the
right time with the correct input. In the Jasmine world, spies help us assert whether
dependencies were invoked.

A spy is an object that intercepts every call to the function it is spying on. Once the
call is intercepted, it can either return fixed data or pass the call to the actual function
being invoked. It also records the call invocation details that can be used later in
expect as we did in the preceding test.

Spies are very powerful and can be used in a number of ways during
unit testing. Look at the documentation on spies at http://jasmine.
github.io/2.0/introduction.html#section-Spies to learn
more about them.

If we look at the WorkoutController implementation, we emit a message with
the details of the workout whenever the workout starts. WorkoutHistoryTracker
subscribes to this message/event. The last expect function verifies
that the $scope.$emit function was called when the workout started
(toHaveBeenCalledWith). It is also asserting the correctness of the parameters
passed to the $emit function.

Look at the Jasmine documentation for functions: toHaveBeenCalled
and toHaveBeenCalledWith, to learn more about these assert
functions.

The last expect statement asserts the behavior on the spy, but we first need to set up
the spy to make this assert work. Before the $scope.$digest(); statement, add the
following line to the beforeEach block that has the controller creation code:

spyOn($scope, "$emit");

The spyOn function sets up the functions that Jasmine will spy on. It takes the object
to target and the function to spy on as the first and second argument, respectively.
With the preceding statement, every time we call $scope.$emit, the spy intercepts
the call and records it. Run the test and it should pass.

Chapter 7

[353]

On similar lines, we can create spy and confirm that WorkoutHistoryTracker
started when the workout started. Add this spy after the preceding spy declaration:

spyOn(workoutHistoryTracker, 'startTracking');

Then, add the following test:

it("should start history tracking", inject(function
 (workoutHistoryTracker) {
 expect(workoutHistoryTracker.startTracking)
 .toHaveBeenCalled();
}));

Simple and expressive!

One of the interesting challenges for us is to verify that the workout progresses as
the time elapses. The WorkoutController object uses the $interval service to move
things forward with time. How can we simulate time without actually waiting?

We do have a mock $interval service.

Testing the $interval and $timeout implementations
Unit testing code that uses $interval or $timeout is difficult. This is due to the
asynchronous nature of the code and the actual time delay that is required. The
Angular team realized this and created mocks for both $timeout and $interval.
If we inject the ngMock module, then the original $timeout and $interval services
are replaced by the mock ones.

How do these mocks differ from the original $timeout and $interval services?
These mocks do not automatically move forward as the time elapses. We can control
the progress. How? The answer is to use the $interval flush function. Here is how
we use it:

$interval.flush(5000); // flushes 5 second

Therefore, the following code outputs with intervals firing five times:

$interval(function () { console.log("interval fired");}, 2000);
$interval.flush(10000); // flushes 10 second

$interval.flush takes a single argument: the amount of time to flush (in
milliseconds).

Remember that all interval callbacks attached to the $interval
service will be fired when the time is flushed.

Testing the AngularJS App

[354]

Let's see how we can test the WorkoutController implementation that uses
$interval. We are testing the following exercise progress code:

var startExerciseTimeTracking = function () {
var promise = $interval(function () {
 ++$scope.currentExerciseDuration;
 --$scope.workoutTimeRemaining;}, 1000,
$scope.currentExercise.duration - $scope.currentExerciseDuration);

Add this test to the exiting WorkoutController test suite:

it("should increase current exercise duration with time",
 inject(function ($interval) {
expect($scope.currentExerciseDuration).toBe(0);
 $interval.flush(1000);
 expect($scope.currentExerciseDuration).toBe(1);
 $interval.flush(1000);
 expect($scope.currentExerciseDuration).toBe(2);
 $interval.flush(8000);
 expect($scope.currentExerciseDuration).toBe(10);
}));

The magic is done by the flush function. The preceding test flushes 1
second twice and then flushes 8 seconds. Multiple expect verify that the
currentExerciseDuration counter moves as the $interval callbacks are fired.

$timeout too uses the same mechanism for moving time forward.
Use flush to unit test functionalities related to $timeout too.

On similar lines, we can check everything that is moving with time. In the case of
WorkoutController, virtually everything is time-bound.

Let's now check whether exercise transitioning is happening.

Add another test, as follows:

it("should transition to next exercise on one exercise complete",
inject(function (WorkoutService, $interval) {
 $interval.
 flush(WorkoutService.sampleWorkout.exercises[0].duration
 * 1000);
expect($scope.currentExercise.details.name).toBe('rest');
 expect($scope.currentExercise.duration).
 toBe(WorkoutService.sampleWorkout.restBetweenExercise);
}));

Chapter 7

[355]

This time, we flush time duration equal to the total exercise duration in the first
line. Since the next exercise is a rest exercise, we check it by its name and also check
whether the rest duration is consistent with the one defined at the workout level.

Now that we understand how to test implementations related to
$interval/$timeout, let's check the pause and resume workout functionality.

Testing workout pause/resume
When we pause a workout, it should stop/cancel the running $interval service and
the time counter should not lapse. To check this, add the following time test:

it("should not update workoutTimeRemaining for paused workout on
interval lapse", inject(function (WorkoutService, $interval) {
 expect($scope.workoutPaused).toBeFalsy();
 $interval.flush(1000);
 expect($scope.workoutTimeRemaining).
 toBe(WorkoutService.totalWorkoutDuration - 1);
 $scope.pauseWorkout();
 expect($scope.workoutPaused).toBe(true);
 $interval.flush(5000);
 expect($scope.workoutTimeRemaining).
 toBe(WorkoutService.totalWorkoutDuration - 1);
}));

The test starts with verifying the state of the workout, then pauses it, and again tries
to flush a time to verify that the time of workoutTimeRemaining does not change
after pause.

The workout.spec.js file in chapter7/checkpoint1 has a number of tests other
than the ones that we have covered so far. It is a good time to look at those test cases.
For now, we plan to move to the next section of this chapter that is dedicated to
testing services.

Unit testing services
Unit testing services is not much different from unit testing controllers. Once we get
the hang of how to set up a component and its dependencies (mostly using mocks),
it becomes a routine affair to test any Angular component. More often than not, the
challenge is to set up the dependencies for the component so that testing can be done
effectively.

Things are a little different for services that make remote requests (using either
$http or $resource). There is some amount of setup required before we can test
such services in isolation.

Testing the AngularJS App

[356]

We will target WorkoutService and write some unit tests for it. Since this service
makes remote requests to load workout data, we will explore how to test such a
service with a mock HTTP backend.

AngularJS has a service for that: $httpBackend, which is again part of the ngMock
module. Let's see how $httpBackend works.

Mocking HTTP request/response with $httpBackend
When testing services (or as a matter of fact any other Angular construct) that make
remote requests, we obviously do not want to make actual requests to a backend
to check the behavior. That does not even qualify for a unit test. The backend
interaction just needs to be mocked away. Angular provides a service for precisely
that: the $httpBackend service!

There is a standard $httpBackend service in the core module
that is used by the $http and $resource services. The
$httpBackend service in the ngMock module is specifically
targeted towards unit testing.

Using $httpBackend, we intercept HTTP requests, mock actual responses from the
server, and assert endpoints invocation too. In fact, the framework throws an error
if a unit test tries to connect to a remote location, for example:

Error: Unexpected request: GET https://api.mongolab.com/api/1/databases/testdb/
collections/workouts?apiKey=testK

The bottom line is that remote requests of any kind during unit
testing are forbidden.

The $httpBackend service has two sets of methods to mock the backend:

• Functions for Request Expectations: These methods start with the word
expect, for example, expect, expectGET, expectPOST, expectHEAD,
expectDELETE, expectPUT, and expectPATCH. The salient feature of these
functions is that these methods not only set up a mock backend, but also set
up assertions that fail if the request is not performed according to the setup
specified in mock. For example, look at this test:
it("it should get google home",function() {
 $httpBackend.expectGET("http://www.google.com")
 service.getData();
 $httpBackend.flush();
});

Chapter 7

[357]

The test fails if getData does not make a request to www.google.com.
We do not need to set up any Jasmine spy or explicitly assert using expect.
Such a setup is useful if we want to assert whether an HTTP request was
actually made.

• Functions for backend definitions: These methods start with the word when,
for example, when, whenGET, whenPOST, whenHEAD, whenDELETE, whenPUT,
and whenPATCH. Their primary aim is to provide a mock backend that
responds with data when a request is made. These functions do not assert
whether invocation actually happened or not. This setup helps when we
want to just mock remote calls, but are not interested in whether a call was
made or not.

To provide a mock return value for an HTTP invocation, we need to call the respond
function on the object returned by the expect* or when* function, such as:

$httpBackend.whenGET("http://api.endpoint.com").respond(200,
 {data:'data'});

Since HTTP requests are asynchronous, $httpBackend too has a flush function
similar to $interval/$timeout. This function needs to be called explicitly to
complete the request.

Let's add some tests for WorkoutService.

Testing WorkoutService
The original WorkoutService implementation requires some initial setup (during
the configuration stage) before it can be used. This includes setting up the MongoLab
database name and the API key. Hence, the same setup needs to be done for the unit
test WorkoutService. This can be done with the module function.

Start by creating a services.spec.js file in the shared folder under js and add the
following setup code:

describe("Shared Services", function () {
 beforeEach(module('app'));
 describe("Workout Service", function () {
 var WorkoutService, $httpBackend,
 collectionUrl = "https://api.mongolab.com/api/1/
 databases/testdb/collections",
 apiKey = "testKey";
 beforeEach(module(function (WorkoutServiceProvider,
 ApiKeyAppenderInterceptorProvider) {
 WorkoutServiceProvider.configure("testdb");
 ApiKeyAppenderInterceptorProvider.setApiKey("testKey")

Testing the AngularJS App

[358]

 }));

 beforeEach(inject(function (_WorkoutService_, _$httpBackend_) {
 WorkoutService = _WorkoutService_;
 $httpBackend = _$httpBackend_;
 }));
 });
});

Two beforeEach blocks have been set up inside the describe block of Workout
Service. The first block sets up WorkoutService and ApiKeyAppenderInterceptor
using the module function. We configure the database name and a dummy API key
for the interceptor. The module function call is different this time; we are passing
in a function instead of passing in a module name to load. We are passing in an
anonymous module initialization function. The function gets called during the
configuration stage of app bootstrapping (evident from the providers passed to it)
and sets up the necessary dependencies.

The second block also has something interesting: the prefix and suffix _ character in the
inject function. They still represent the same WorkoutService and $httpBackend
dependencies. Angular strips the _ character before searching for the actual
dependency and injects the correct one. This syntax of dependency injection is useful
when we want to use the same variable names as the dependency names, such as
WorkoutService and $httpBackend that we declare at the top of the describe block.

With this setup, we are ready to write our first test. Add this code to the services.
spec.js file after the beforeEach block:

it("should request all workouts endpoints", function () {
 $httpBackend.expectGET(collectionUrl + "/workouts?apiKey=" +
 "testKey").respond([]);
 WorkoutService.getWorkouts();
 $httpBackend.flush();
});

This is a simple test to make sure that the correct endpoint is hit when getWorkouts
is invoked. There is no expect function defined in the test as expectGET
automatically asserts if the correct endpoint is hit or not. The final flush() function
call actually simulates the request.

Chapter 7

[359]

Next, let's write a test for the service function getWorkout that loads workouts with
a specific name. We plan to check whether the data is being returned correctly and
mapped to the correct WorkoutPlan model. Add the following test:

it("should return a workout plan with specific name", inject(function
(WorkoutPlan, $q) {
 spyOn(WorkoutService.Exercises, "query").and.returnValue({
 $promise: $q.when([{ name: "exercise1",title: "exercise 1"
 }])
 });
 $httpBackend.expectGET(collectionUrl +
 "/workouts/testplan?apiKey=" + "testKey")
 .respond({
 name: "Workout1", title: "Workout 1",
 restBetweenExercise: 30
 });
 var result = null;
 WorkoutService.getWorkout("testplan")
 .then(function (workout) { result = workout;});

 $httpBackend.flush();
 expect(result.name).toBe("Workout1");
 expect(result instanceof WorkoutPlan).toBe(true);
 expect(WorkoutService.Exercises.query).toHaveBeenCalled();
}));

The first thing that we do in this is to set up a spy that spies on the resource query
function of Exercises. The spy is set up to return a promise with some exercise
data. This setup is required, as the service getWorkout function uses the Exercises
resource (the $resource class) to load all exercises for the mapping purpose.

Then, it is all about setting up the expectation for a query and responding with
some dummy data. But this time, we store the result of the execution in the result
variable. Before we can assert on result data, we first need to simulate a call by
calling flush. The flush function simulates the HTTP call, triggers the promise
success callback, and result has some value. The statements after that are just
asserting on the data returned by the service call.

Testing the AngularJS App

[360]

One last thing that we should add when testing services that use $http or
$resource service is the following code block:

afterEach(function () {
 $httpBackend.verifyNoOutstandingExpectation();
 $httpBackend.verifyNoOutstandingRequest();
});

Add this to the test suite for WorkoutService. These statements will make sure
that there are no outstanding expectations and all requests have been made. Since
invoking a mock HTTP request requires a call to flush, these statements act as a
safeguard against the scenario where we may forget to call flush after making an
HTTP request using either $http or $resource.

With this, we have covered testing services. There are many more tests available in
chapter7/checkpoint1/app/js/shared/services.spec.js that we can check to
understand how other scenarios were tested.

Next we need to learn how to test directives. The next section is dedicated to
understanding the challenges in directive testing and how to overcome them.

Unit testing directives
All other Angular constructs that we have tested so far do not involve any UI
interaction. But directives—as we know—are a different beast. Directives are all
about linking the view with models/controllers and extending the behavior of
HTML elements. While testing directives, we cannot ignore the UI connections
and hence directive testing may not strictly qualify as unit testing.

The good thing about directive testing is that its setup process is not as elaborate
as services or controllers. The pattern to follow while unit testing directives is
as follows:

1. Take an HTML fragment with the directive markup.
2. Compile and link it to a specific scope.
3. Verify that the generated HTML has the required attributes. This can be done

using jQlite or jQuery library functions.
4. If the directive creates scope and/or changes the state of the scope, verify the

changes.

In this section, we are going to test remote-validator, a combination of remote-
validator, busy-indicator, and workout-tile, which seems to be the simplest
directive but requires good amount of setup to test.

Chapter 7

[361]

This will be a good time to revisit the directives that we built in the
previous chapter. Also, keep the code handy for the tests we will
create in the following sections.

Let's get started and add the directives.spec.js file to the shared folder under
app/js where most of our directives are. Then, add this test setup code:

 describe("Directives", function () {
 var $compile, $rootScope, $scope;
 beforeEach(module('app'));

 beforeEach(inject(function (_$compile_, _$rootScope_) {
 $compile = _$compile_;
 $rootScope = _$rootScope_;
 $scope = $rootScope.$new();
 }));
});

We just declared global services: $compile, $scope, and $rootScope, and set them
up in beforeEach for our tests to follow.

Testing remote-validator
Let's start with unit testing remote-validator. Just to refresh our memory,
remote-validator validates an input against remote rules. It does so by calling a
function on the scope that returns a promise. If the promise is resolved with success,
validation passes; otherwise, validation fails. The scope function invoked is linked to
the directive through the remote-validator-function directive attribute.

Add the following code inside the describe block of Directives after the second
beforeEach block:

describe("remote validator", function () {
var inputElement;
beforeEach(inject(function () {
 $scope.validate = function (value) {};
 inputElement = "<form name='testForm'><input type='text'
 name='unique' ng-model='name' remote-validator='unique'
 remote-validator-function='validate(value)' /></form>";
 }));

it("should verify unique value when use input changes",
 inject(function ($q) {
 spyOn($scope, "validate").and.returnValue($q.when(true));

Testing the AngularJS App

[362]

 $compile(inputElement)($scope);
 $scope.testForm.unique.$setViewValue("dummy");
 expect($scope.validate).toHaveBeenCalled();
 }));
 });
});

The remote-validator test suite (the describe block) first sets up the scope with
a dummy validation function (validate) and the input markup that contains
the directive declaration, as highlighted in the preceding code. The reason we
have wrapped the input in the form tag is due to the fact we want to access
NgModelController for input to perform our assertions.

The unit first sets a spy on the validate function as the function is linked to
remote-validator. The test then compiles the input element and links it to a
scope. This results in the creation of a form (testForm) and a model (unique)
controller on the scope.

To simulate an actual input and verify whether the validation function is
being invoked, the test uses $setViewValue available on the model controller
(NgModelController). This internally triggers the parser pipeline, and hence
our remote-validator parser function.

For directives of Angular 1.3, $setViewValue triggers both the parser
pipeline and all the validators attached to NgModelController. The
validators are not part of the parser pipeline but do get evaluated.

We are not bothered with the results of validation, hence the test just asserts whether
the validation function on the scope was invoked.

Let's verify some behavior of remote-validator when validation fails. Add this test
after the preceding it block:

it("verify failed 'unique' validation should set model controller
invalid.", inject(function ($q) {
 spyOn($scope, "validate").and.returnValue($q.reject());
 $compile(inputElement)($scope);
 $scope.testForm.unique.$setViewValue("dummy");
 expect($scope.validate).toHaveBeenCalled();
 $scope.$digest();

 expect($scope.testForm.$valid).toBe(false);
 expect($scope.testForm.unique.$valid).toBe(false);
 expect($scope.testForm.unique.$error.unique).toBe(true);
}));

Chapter 7

[363]

The first four steps of this test are the same as the previous test; the only difference is
that the promise is rejected ($q.reject()). This results in failed validation.

The next call to $scope.$digest() is required to sync the model as the validate
call is asynchronous. Once the digest cycle is done, we can assert for the state of
the form and model controllers and even confirm that the error object hash has the
necessary failed validation.

On similar lines, we can also test successful remote validation and the state of the
controller after validation.

Testing remote-validator and busy-indicator together
The remote-validator directive can work in tandem with busy-indicator. Let's
see how well they work together. Add the following describe block after the
existing describe block for remote validator:

describe("remote validator with busy indicator", function () {
 var inputElement;
 beforeEach(inject(function ($q) {
$scope.validate = function (value) {};
inputElement = "<form name='testForm'><div busy-
 indicator=''><input type='text' name='unique' ng-model='name'
 remote-validator='unique' remote-validator-function=
 'validate(value)' /></div></form>";
 }));

 it("should show busy indicator when remote request is made
 and hide later", function () {
 var defer = $q.defer(),
 html = $compile(inputElement)($scope),
 childElementScope = html.children().scope();

 spyOn($scope, "validate").and.returnValue(defer.promise);

 expect(childElementScope.busy).toBeUndefined();

 $scope.testForm.unique.$setViewValue("dummy");
 expect(childElementScope.busy).toBe(true);

 defer.resolve(true);
 $scope.$digest();

 expect(childElementScope.busy).toBe(false);

 }));
});

Testing the AngularJS App

[364]

As with any component under test, there is some amount of code setup required.
This time, we create inputElement with input and a div tag with the busy-
indicator directive applied.

At the start of the test, we create a custom promise using the defer API. This is the
promise that the validate function returns in the spy setup.

We compile and link the HTML file against the current $scope service. Since
the busy indicator creates a child scope (as you can see in the definition, it has
scope:true), we need to get hold of it for future asserting. The statement html.
children().scope() does the magic and assigns it to childElementScope.

The scope() function is an extension function for the jqLite/jQuery
element class available in Angular. There is a similar function to
retrieve an isolated scope too, aptly named isolateScope().
Check the Angular documentation at https://code.angularjs.
org/1.3.3/docs/api/ng/function/angular.element.

Once everything is set up, we assert the state of the busy flag after firing
$setViewValue. Calling $setViewValue triggers a call to the validate function. We
immediately assert if the busy flag is set to true, as remote validation is in progress.

We then resolve the custom promise (marking remote validation complete), run a
digest cycle, and assert whether the busy indicator flipped back to false. All these
assertions are done on the child scope (childElementScope).

Observe carefully how we create a custom promise, return it as part of the validate
function call, and resolve it manually to assert the behavior of busy-indicator.
Also, this test does not validate the HTML content when remote validation is done.
Instead, it only asserts the state of the busy flag.

That's it on testing busy-indicator and remote-validator together. We created
some tests for the ajax-button directive too, but we will not be covering them in
this chapter. Look at chapter7/checkpoint1/app/js/shared/directives.spec.
js for tests that have been created for ajax-button. Since ajax-button uses an
isolated scope, the mechanism to get the isolated scope for assertion involves calling
isolateScope() on the directive HTML element.

The directives.spec.js file also contains a number of new tests
for directives that we have covered thus far.

The last directive that we plan to test here is the workout-tile directive. This trivial
directive that just renders a remote HTML partial is difficult to set up.

Chapter 7

[365]

Testing directives with templateUrl
The workout-tile directive uses templateUrl to load the partial and render it
in HTML. The challenge is to make the template available for unit testing without
making any remote request. Remember, Angular does not like server invocation
during unit testing. So what options do we have?

We can manually prep the $templateCache service. For this, we need to copy the
HTML content from each template file, create a string representation, and then add
it to $templateCache manually.

$templateCache is a service exposed by Angular to cache HTML
fragments. Every view that we load in our app comes from the template
cache.
When a view is requested for the first time through either ng-include,
a directive template (templateUrl), or ng-view, Angular retrieves
the view and adds it to $templateCache before actually serving it.
This performance optimization helps Angular serve all future requests
for the same view from $templateCache, instead of making the same
remote request again and again.

Something like this can be used:

$templateCache.put('/partials/workoutbuilder/workout-tile.html',
 '<div>templatehtml</div>');

If we manually prep $templateCache, the cache key should
be the path to the partial that is the same as that defined in the
directive definition's templateUrl property.

While this approach works, it has some serious drawbacks. Firstly, we manually
need to duplicate and format the HTML content as a string. Secondly, any change to
the original partial view needs to be kept in sync with the HTML string we create for
the unit test. That seems to be too much effort to set up a template. There should be
something better.

Karma has the concept of preprocessors. Preprocessors allow us to manipulate files
before they are loaded in a browser for testing. There is a preprocessor that can help
us here. The karma-ng-html2js-preprocessor plugin (https://github.com/
karma-runner/karma-ng-html2js-preprocessor) converts HTML files into the
JavaScript template and makes them available for testing.

Testing the AngularJS App

[366]

Let's integrate this preprocessor and see how it works and how can it help with unit
testing our workout-tile directive.

Install the npm module from the command line using the following command:

npm install karma-ng-html2js-preprocessor --save-dev

The version of karma-ng-html2js-preprocessor used is 0.1.2.

Then, update the karma.cofig.js file under tests with some configuration specific
to this preprocessor. This is how sections of the configuration files should now look:

files: [
 //existing file references
 'app/partials/**/*.html', // Add this path reference.
],
 preprocessors: {
 'app/partials/**/*.html': ['ng-html2js'] //add this
},

 // Add this new property
 ngHtml2JsPreprocessor: {
 // strip this from the file path
 stripPrefix: 'app',
},

By adding the folder reference for HTML partials in the Karma files section ('app/
partials/**/*.html'), we instruct Karma to load these partials before testing
starts. This allows preprocessors to work on them.

The karma-ng-html2js-preprocessor preprocessor is registered within the
preprocessors section of the Karma configuration.

The ngHtml2JsPreprocessor property added later contains configurations specific
to the preprocessor. The only configuration it has is stripPrefix. This setting strips
away the app string from the template name (which is also the template path) before
adding it to $templateCache. Without this, the templateUrl directive will not
match the name in the $templateCache key, and the view will not load from cache.

Internally, the preceding preprocessor creates a script file for each HTML template.
Each script file has one Angular module. The only thing the module does is to add
the string representation of HTML to $templateCache. It is easy to understand what
is happening if we look at the actual generated code.

Chapter 7

[367]

If the Karma window is open, click on the Debug button. On the new debug
window, open the browser's developer console and look at the Source tab. The
generated code for workout-tile.html looks like this:

Now that the preprocessor setup is complete, let's add the test for the workout
tile. Add a new file directives.spec.js under js/workoutbuilder/ with the
following code:

describe("Directives", function () {
 var $compile, $rootScope, $scope;

 beforeEach(module('app'));
 beforeEach(module('/partials/workoutbuilder/
 workout-tile.html'));

 beforeEach(inject(function (_$compile_, _$rootScope_) {
 $compile = _$compile_;
 $rootScope = _$rootScope_;
 $scope = $rootScope.$new();
 }));

 describe("Workout tile", function () {
 it("should load workout tile directive",
 inject(function ($templateCache) {
 var e = $compile("<workout-tile></workout-tile")($scope);
 $scope.$digest();
 expect(e.html().indexOf('class="duration"') > 0);
 }));
 });

});

Testing the AngularJS App

[368]

Since the preprocessor creates one module per partial, by using the following
command we include the module that contains the template definition:

beforeEach(module('/partials/workoutbuilder/workout-tile.html'));

Testing the directive then becomes a simple affair. We compile and link the directive
and assert whether the directive is loaded correctly, this time by verifying the HTML
content. That is pretty much it.

We are done with directive testing. Let's test our app routes.

Unit testing routes and resolve
If we look at the route setup in config.js, there are some standard route definitions
and a few routes use the resolve configuration to inject data into the controller. This
is something that can be tested.

We can test the route configuration and make sure the correct path, route, and
controller are set when the route changes. For routes with resolve, we can check if
the associated resolve functions were actually invoked.

Create a config.spec.js file in the same folder as config.js and add the first
route test:

describe("Trainer routes", function () {
 beforeEach(module('app'));

 it("should default to start workout route",
 inject(function($rootScope,$location,$route,$httpBackend) {
 $httpBackend.whenGET("partials/workout/start.html")
 .respond("<div/>");
 $location.path("/");
 $rootScope.$digest();
 expect($location.path()).toBe("/start");
 expect($route.current.templateUrl)
 .toBe("partials/workout/start.html");
 expect($route.current.controller).toBeUndefined();
 }));
});

The first thing we do is to set up the mock HTTP backend to respond to partial view
requests—requests that are made when we do navigation. $httpBackend.whenGET
makes sure that requests to get the start page HTML is responded to with mock
HTML.

Chapter 7

[369]

The previous test highlights the usefulness of the $httpBackend.
whenGET function. Here, we just want to mock the request, and we
are not interested in asserting whether the call was actually made.

The next step uses location.path to navigate to the root. The expectation here is
that, due to the following route setup, the route is automatically set to start route
and we assert this behavior:

$routeProvider.otherwise({ redirectTo: '/start' });

The next line $rootScope.$digest is required. Without this call, the transition does
not happen. Once the digest cycle is complete, we assert the correctness of the new
path.

Note the $route injection that we have used in the test. Without injecting $route,
the actual transition does not happen. The $location service just triggers route
transition. After the transition, we check location and the current route properties
to confirm that the route change worked.

Let's now try to test a route that has parameters. Add the following test to the
config.spec.js file

it("should load the workout.", inject(function ($rootScope,
 $location, $route, $httpBackend) {
 $httpBackend.whenGET("partials/workout/workout.html")
 .respond("<div/>");
 $location.path("/workout/dummyWorkout");
 $rootScope.$digest();
 expect($location.path()).toBe("/workout/dummyWorkout");
 expect($route.current.params.id).toBe('dummyWorkout');
}));

This is the Workout Runner route and we assert that the location path is set correctly
and the route parameters have been set correctly ($route.current.params.id).

Next, let's test whether the resolved route is firing correctly and on the correct path.
Add the following test to config.spec.js:

it("should start workout building when navigating to workout
 builder route.", inject(function ($rootScope, $location, $route,
 $httpBackend,WorkoutBuilderService) {
 spyOn(WorkoutBuilderService, "startBuilding");
 $httpBackend.whenGET("partials/workoutbuilder/workout.html")
 .respond("<div/>");

Testing the AngularJS App

[370]

 $location.path("/builder/workouts/new");
 $rootScope.$digest();
 expect($location.path()).toBe("/builder/workouts/new");
 expect(WorkoutBuilderService.startBuilding)
 .toHaveBeenCalled();
 expect(WorkoutBuilderService.startBuilding.calls.count())
 .toBe(1);
}));

This is the Workout Builder endpoint/route. To verify that the route resolve was
called, instead of creating a mock for WorkoutBuilderService, we inject the real
service but set up a spy on it to make sure the startBuilding function is called
inside resolve. After that, it is all standard stuff where we verify the route path
and whether spy was called or not.

This is really good as we aren't limited to testing all standard constructs of Angular;
we can also test items such as the route setup. This gives us excellent unit test
coverage.

With this, we have covered almost all aspects of unit testing, and it's time to turn
our focus toward learning how to perform E2E testing in Angular.

Other than the unit tests we have covered in this chapter, there are a
number of other tests that have been added for the app. Download the
specification files from the chapter7/checkpoint1 codebase and see
what else has been unit tested.
The code is also available on GitHub (https://github.com/
chandermani/angularjsbyexample) for everyone to download.
Checkpoints are implemented as branches in GitHub. The branch to
download is checkpoint7.1 and the folder is trainer.

Getting started with E2E testing
Automated E2E testing is an invaluable asset if the underlying framework supports
it. As the size of an app grows, automated E2E testing can save a lot of manual effort.
Without automation it's just a never-ending battle to make sure the app is functional.
However, remember that in an E2E setup, not everything is automatable; it may
require a lot of effort to automate. With due diligence, we can offload a good amount
of manual effort but not everything.

Chapter 7

[371]

The process of E2E testing a web-based application is about running the application
in a real browser and asserting the behavior of the application based on the user
interface state. This is how an actual user does testing.

Browser automation holds the key here and modern browsers have become smarter
and more capable in terms of supporting automation. Selenium tools for browser
automation are the most popular option out there. Selenium has the WebDriver
(http://www.w3.org/TR/2013/WD-webdriver-20130117/) API that allows us to
control the browser through automation API that modern browsers natively support.

The reason behind bringing up Selenium WebDriver is due to the fact that the
Angular E2E testing framework/runner Protractor also uses WebDriverJS, which
is a JavaScript binding of WebDriver on Node. These language bindings (like the
preceding JavaScript binding) allow us to use the automation API in the language of
our choice.

Let's discuss Protractor before we start writing some integration tests for our app.

Introduction to Protractor
Protractor is the de facto test runner for E2E testing in Angular. Protractor uses
Selenium WebDriver to control a browser and simulate user actions.

Protractor supersedes an earlier E2E framework known as AngularJS
Scenario Runner. Karma had a plugin that allowed Karma to execute
E2E tests.

A typical Protractor setup has the following components:

• A test runner (Protractor)
• A Selenium Server
• A browser

We write our test in Jasmine and use some objects exposed by Protractors (which is
a wrapper over WebDriverJS) to control the browser.

When these tests run, Protractor sends commands to the Selenium server. This
interaction happens mostly over HTTP.

The Selenium server, in turn, communicates with the browser using the WebDriver
Wire Protocol and internally the browser interprets the action commands using the
browser driver (such as ChromeDriver in the case of Chrome).

Testing the AngularJS App

[372]

It is not that important to understand the technicalities of this communication,
but we should be aware of the E2E testing setup. Check the article from Protractor
documentation at http://angular.github.io/protractor/#/infrastructure
to learn more about this flow.

Another important thing to realize when using Protractor is that the overall
interaction with the browser or the browser control flow is asynchronous in nature
and promise-based. Any HTML element action, be it sendKeys, getText, click,
submit, or any other, does not execute at the time of invocation; instead the action
is queued up in a control flow queue. For this precise reason, the return value of
every action statement is a promise that gets resolved when the action completes.

To handle this asynchronicity in Jasmine tests, Protractor patches Jasmine and
therefore assertions like these work:

expect(element(by.id("start")).getText()).toBe("Select Workout");

They work despite the getText function returning a promise and not the element
content.

At the time of writing, Protractor supports Jasmine Version 1.3.

With this basic understanding of how Protractor works, let's set up Protractor for
E2E tests.

Setting up Protractor for E2E testing
To install Protractor globally, run this command in the console:

npm install -g protractor

This installs two command-line tools: Protractor and webdriver-manager. Run the
following command to make sure Protractor is set up correctly:

protractor --version

All E2E tests have been verified against Protractor 1.6.1.

Chapter 7

[373]

Webdriver-manager is a helper tool to easily get an instance of a running Selenium
server. Before we start the Selenium server, we need to update the driver binaries
with the following call:

webdriver-manager update

Finally, run this command to start the Selenium server:

webdriver-manager start

Protractor tests send requests to this server to control a local browser.

Make sure that the Selenium server is running at all times during
E2E testing. This can be verified by checking the status of the server
at http://localhost:4444/wd/hub (default location).

Protractor also needs to be configured like Karma and has a configuration file.
Copy the protractor.config.js file from the tests folder under chapter7/
checkpoint2/ to our local tests folder. The Protractor configuration file we just
added contains three settings that we want to make sure are configured according
to our local app setup, and these include the following:

Key Description
specs Location of the specification files (the E2E test files). The

current assigned value ['e2e/*.js'] should work.
baseUrl The base URL where the app is running. Change the server name

and port to match your local setup. Navigate to the URL to make
sure the app is running.

seleniumAddress The base URL where the Selenium server is running. Unless
you have reconfigured the selenium server settings, the
default value should work.

The configuration file documentation on the Protractor website
(https://github.com/angular/protractor/blob/master/
docs/referenceConf.js) contains details on the other supported
configurations.

That is enough to start testing with Protractor. Let's begin writing and executing
some tests.

Testing the AngularJS App

[374]

Writing E2E tests for the app
Let's start in a simple manner and test our app start page (#/start). This page has
some static content, a workout listing section with search capabilities, and the ability
to start a workout by clicking any workout tile.

All our E2E tests will be added to the e2e folder under tests.

Add a new file workout-runner.spec.js to the e2e folder under tests with the
following code:

 describe("Workout Runner", function () {
 describe("Start Page", function () {
 beforeEach(function () {
 browser.get("");
 });
 it("should load the start page.", function () {
 expect(browser.getTitle()).toBe("Personal Trainer");
 expect(element(by.id("start")).getText())
 .toBe("Select Workout");
 });
 });
});

Before we execute our first test, make sure the Selenium server is running
(webdriver-manager start) and the app is running.

Now from the command line run the following command and see the browser dance
to our tunes:

protractor tests/protractor.conf.js

Protractor will open the browser; navigate to the start page; wait for the page, the
scripts, and the framework to load; and then perform the test. It finally logs the
results of the test in the console. That is pretty awesome!

Let's walk through this simple test.

The first interesting piece is inside the beforeEach block. The browser object is a
global object exposed by Protractor and is used to control the browser-level actions.
Underneath, it is just a wrapper around WebDriver. The browser.get("") function
navigates the browser to start the app page every time before the start of the test.

Chapter 7

[375]

The actual test verifies whether the title of the page is correct. It also checks whether
some random content is present on the page.

The preceding test employs two new globals: element and by, that are made
available by Protractor:

• element: This function returns an ElementFinder object. The primary job of
ElementFinder is to interact with the selected element. We will be using the
element function to select ElementFinder extensively in our tests.

Refer to the documentation for ElementFinder (http://angular.
github.io/protractor/#/api?view=ElementFinder)
and webdriver.WebElement (http://angular.github.
io/protractor/#/api?view=webdriver.WebElement) to
know more about element manipulation API support. Functions
such as getText() are actually defined on WebElement, but are
always accessed using ElementFinder. As the documentation
for ElementFinder suggests, ElementFinder can be treated as
WebElement for most purposes.

• by: This object is there to locate elements. It has functions that create
locators. In the preceding test, a locator is created to search for elements
with id=start. There are a number of locators that can be used to search for
a specific element. These include by class, by ID, by model (ng-model), by
binding, and many more. Refer to the Protractor documentation on locators
at http://angular.github.io/protractor/#/locators to learn about the
supported locators.

Just to reiterate what we discussed earlier, getTitle() and
getText() in the preceding test do not return the actual text, but a
promise—we can still assert on the text value.

This simple test highlights another salient feature of Protractor. It automatically
detects when the Angular app is loaded and when data is available for testing. There
are no ugly hacks to delay testing (using timeouts) that may otherwise be required in
standard E2E testing scenarios.

Remember, this is a SPA; full-page browser refresh does not happen, so it is not that
simple to determine when the page is loaded and when data that is rendered for
AJAX calls is available. Protractor makes it all possible.

Testing the AngularJS App

[376]

Protractor may still timeout while trying to assess whether the page is
available for testing. If you are hitting timeout errors with Protractor,
this article in the Protractor documentation can be really helpful
(http://angular.github.io/protractor/#/timeouts) in
debugging such issues.

Let's do something more interesting. Why don't we test whether the search box in the
start page is working fine?

Testing the search functionality is going to be a tricky affair. Since this is E2E testing,
we need some data to test searches. Therein lies the challenge: not only do we
need some data to test searches, but we need a fixed data set. This implies that the
backend should always return a constant data set. From an E2E test perspective, the
workouts returned by a MongoLab instance should always be the same.

What options do we have to handle E2E tests that involve some initial data setup?

Setting up backend data for E2E testing
Setting up backend data for E2E testing is a challenge, irrespective of the E2E
framework we employ for testing. The ultimate aim is to assert the behavior of an
application against some data and unless the data is fixed, we cannot verify behavior
that involves getting or setting data.

One approach to set up data for E2E tests is to create a test data store specifically
for E2E tests with some seed data. Once the E2E tests are over, the data store can be
reset to its original state for future testing. For Personal Trainer, we can create a new
database in MongoLab dedicated exclusively to E2E testing.

This may seem a lot of effort, but it is necessary. Who said E2E testing is easy! In fact,
this challenge is there even if we do manual testing. For a real app, we always have
to set up data stores/databases for every environment—be it dev, test, or production.

Having said that, we plan to do something different! We will again mock the
backend!

Mocking the server backend in E2E testing
Before your hands go up in protest, let me remind you that this too is a viable option.
If setting up a new data store is expensive and time-consuming and/or the backend
API is well tested, there is at least an option to mock data. Another reason to use a
mock backend is to learn about the mocking capabilities of Angular in the context of
E2E testing.

Chapter 7

[377]

The service that is again going to help in this case is $httpBackend, but this time the
service comes from the ngMockE2E module, instead of ngMock.

Setting up the HTTP mock backend is an intrusive process and requires some
changes to the existing application code. To plug in a mock backend we need to
perform the following steps:

1. Create a new module with dependency on the main app module (named
app) and the ngMockeE2E module.

2. Add the mock HTTP implementation in this module using the
$httpBackend.when* functions. These methods are similar to the ones we
used in unit tests.

3. Rewire the ng-app declaration in index.html to use the new ngMockeE2E
module instead of the existing app module. The app bootstrapping process
will use ngMockeE2E now, and the mock backend setup in the ngMockeE2E
module will override the standard HTTP requests that the app makes to
get data.

The overall process explained in the preceding steps is intrusive,
because it rewires the app to use the mock backend with mock data.
To revert to the original backend, we need to reconfigure the app.
This may seem to be a deal breaker, but most modern build systems
(such as Grunt) allow us to do dynamic file transformations based on
build deployment configurations.

Let's rewire our app to use mock backend. Copy appe2e.js from chapter7/
checkpoint2 into the same location where app.js resides. This file declares the new
module that we use (appe2e). It also contains a mock data setup for our backend,
which is nothing but a series of $httpBackend.when* calls to set up the backend
endpoint to respond to and the data to return.

$http in Angular is used for all types of HTTP communication. This includes
loading view partials too. We do not want to mock such requests to our backend.
The good thing about the when API is that it does allow us to pass through any
request to the real backend if desired, and the following command does just that:

 $httpBackend.whenGET(/^partials///).passThrough();

Any request made to the /partials path is served from the real backend; in this
case, this is the path to our HTML partials views. This is possible due to the fact
that the URL to the when function allows regex pattern matching.

Testing the AngularJS App

[378]

Even the index.html file needs to change as we need to use the new module now.
Update the existing ng-app declaration in index.html to:

<body ng-app="appe2e" ng-controller="RootController">

Add the following two script references in the script section:

<script src =... angular-animate.js"></script>
<script src = "http://ajax.googleapis.com/ajax/
 libs/angularjs/1.3.3/angular-mocks.js"></script>
//Other scripts
<script src="js/app.js"></script>
<script src="js/appe2e.js"></script>

We add references to appe2e.js and angular-mocks.js that contain the ngMockE2E
module definition.

Load the app again! If the app start page (/start) loads correctly and shows
two workouts, then the mock backend is working fine. Check out the following
screenshot:

The app is now working on mock data and is ready to be tested.

More E2E tests
Let's get back to testing workout search features on the start page. Our mock
backend returns two fixed workouts and we can assert search behaviors against
these. Add this test after the existing test in workout-runner.spec.js:

Chapter 7

[379]

it("should search workout with specific name.", function () {
var filteredWorkouts = element.all(by.repeater("workout in
 workouts"));
expect(filteredWorkouts.count()).toEqual(2);

var searchInput = element(by.model("workoutSearch"));
 searchInput.sendKeys("test");

 expect(filteredWorkouts.count()).toEqual(1);
 expect(filteredWorkouts.first().element(by.css(".title")).
getText(
)).toBe("A test Workout");
});

The test uses ElementFinder and Locator API to look for elements on the page.
Check the first line; there is a locator for ng-repeat: by.repeater! The by.repeat
locator together with the element.all function does a multi-element match and the
next line asserts the element count.

The test then gets hold of the search input, but uses another Angular-specific locator
by.model that looks for the ng-model binding. The sendKeys function is used to
simulate data entry in the search input.

The last two expect operations check for the count of elements in ng-repeat again,
and they check whether the correct workout is filtered based on the span text. The
last expect statement also highlights how we can chain element filtering and get
hold of child elements in HTML.

Run the test again (protractor tests/protractor.conf.js) and once again
observe the magic of browser automation as two tests run one after another.

Can we automate E2E testing for Workout Runner? Well, we can try.

Testing Workout Runner
One of the major challenges with testing Workout Runner is that everything is time-
dependent. With unit testing, at least we were able to use the mock $interval
service—but not anymore. Testing exercise transitions and workout completion is
definitely difficult.

However, before we tackle this problem or try to find an acceptable workout, let's
digress and learn about an important technique to manage E2E testing: page objects!

Testing the AngularJS App

[380]

Page objects to manage E2E testing
The concept of page objects is simple. Encapsulate the representation of page
elements into an object so that we do not have to litter our E2E test code with
ElementFinder and locators. If any page element moves, we just need to fix the
page object.

Here is how we can represent our Workout Runner page:

var WorkoutRunnerPage = function () {
this.description = element(by.binding(
 "currentExercise.details.description"));
this.steps = element(by.binding(
 "currentExercise.details.procedure"));
this.videos = element.all(by.repeater(
 "video in currentExercise.details.related.videos"));
this.pauseResume = element(by.id("pause-overlay"));
 this.exerciseHeading = element(by.binding(
 "currentExercise.details.title"));
this.workoutTimeRemaining = element(by.binding(
 "workoutTimeRemaining"))
this.exerciseTimeRemaining = element(by.binding(
 "currentExercise.duration-currentExerciseDuration"));
};

This page object now encapsulates all the elements that we want to test. By
organizing the element selection code in one place, we increase the readability
and hence maintainability of E2E tests.

Add the WorkoutRunnerPage function inside the describe block of Workout Runner
at the top and we can now add a test for Workout Runner.

Add the following describe block as a nested child of describe("Workout
Runner"):

describe("Workout Runner page", function () {
 beforeEach(function () {
 browser.get("#/workout/testworkout");
 });

 it("should load workout data", function () {
 var page = new WorkoutRunnerPage();
 expect(page.description.getText())
 .toBe("The basic crunch is a abdominal exercise in a
 strength-training program.");
 expect(page.exerciseHeading.getText())

Chapter 7

[381]

 .toBe("Abdominal Crunches");
 expect(page.videos.count()).toBe(2);
 });
 });

The workout that we load for this test is testworkout. This workout has two
exercises with a 5-second duration and the rest period is 5 seconds too. The overall
duration is 15 seconds! This workout was set in appe2e.js while setting up the
mock backend earlier in the chapter.

The test verifies that the workout is loaded and the correct data is shown. We make
full use of the page object that we defined earlier. Run the test and verify whether
it passes.

Let's get back to the challenge of testing code based on $interval or $timeout.
Add the following test to the current test suite:

it("should transition exercise when time lapses.", function () {
 var page = new WorkoutRunnerPage();
 browser.sleep(5000);
 page.pauseResume.click();
 expect(page.videos.count()).toBe(0);
 expect(page.description.getText()).toBe("Relax a bit!");
 expect(page.exerciseHeading.getText()).toBe("Relax!");
 });

This test checks whether the exercise transition happened. It does so by adding a
browser.sleep function for 5 seconds, and then verifying from the UI state whether
exercise-related content of Rest is visible. The problem with this test is that it is
not very accurate. It can confirm the transition is happening but cannot confirm it
happened at the right time.

A plausible explanation for this behavior is in the way Protractor works. Before
Protractor can start a test, it first waits for the page to load. If the test involves any
action (such as getText), it again waits till Angular synchronizes the page. During
page synchronization, Angular waits for any pending HTTP requests or any timeout-
based operations to complete before it starts the test. As a result, when the browser.
sleep function is invoked and when the browser actually goes to sleep cannot be
predicted with great accuracy.

We can disable this synchronization behavior by setting browser.
ignoreSynchronization to true, but we should avoid this as
much as possible. If we set it to true, the onus is on us to determine
when the page content is available for making assertions.

Testing the AngularJS App

[382]

As described earlier, Angular waits for any operation based on $timeout to lapse
before starting the test. If you do want Angular to wait for the timeout, use the
$interval service: $interval(fn, delay,1).

The bottom line is that the Workout Runner app workflow is indeed difficult to test.
Compared to Workflow Runner, other things are far easier to test as we saw with
the start page testing.

The companion codebase in the chapter7/checkpoint2/
tests/e2e contains some more tests created for other parts of
the application. The GitHub branch is checkpoint7.2 and the
folder is trainer.

It's time now to wrap up the chapter and summarize our learning.

Summary
We do not need to reiterate how important unit and E2E testing are for any
application. The way the Angular framework has been designed makes testing the
Angular app easy. In this chapter, we covered how to write unit tests and E2E tests
using libraries and frameworks that target Angular.

For unit testing, we used Jasmine to write our tests and Karma to execute them. We
tested a number of filters, controllers, services, and directives from Personal Trainer.
In the process, you learned about challenges and techniques to effectively test these
types.

For E2E testing, the framework of choice was Protractor. We still wrote out tests in
Jasmine but the test runner this time was Protractor. You learned how Protractor
automates E2E testing using Selenium WebDriver, as we did some scenario testing
for the Start and Workout Runner pages.

If you have reached so far, you are getting closer to becoming a proficient Angular
developer. The next chapter reinforces this with more practical scenarios and
implementations built using Angular. We will touch upon important concepts in
the last chapter of this book; these include multilingual support, authentication
and authorization, communication patterns, performance optimizations, and a few
others. You sure do not want to miss them!

Handling Common Scenarios
With seven chapters under our belts, it should feel nice. What we have learned thus
far is a direct consequence of the apps we have built in the last few chapters. I believe
we now have an adequate understanding of the framework, how it works, and
what it supports. Armed with this knowledge, as soon as we start to build some
decent-sized apps, there are some common problems/patterns that will invariably
surface, such as:

• How to authenticate the user and control his/her access (authorization)?
• How to make sure that the app is performing enough?
• My app requires localized content. What should I do?
• What tools can I use to expedite app development?

And many more!

In this chapter, we try to address such common scenarios and provide a working
solution and/or prescriptive guidance to help you handle such use cases.

The topics we cover in this chapter include:

• Angular seed projects: You learn how some seed projects in Angular can
help us when starting a new engagement.

• Multilocal/lingual support: AngularJS has decent support for app localization.
We cover the Angular constructs that help us localize an application and some
libraries that extend multi-locale support in Angular.

• Authenticating Angular applications: This is a common requirement; we
look at how to support cookie- and token-based Authentication in Angular.

Handling Common Scenarios

[384]

• Communication and data sharing patterns: You learn how to share data
and communicate across controllers, directives, filters, and services.

• Angular performance: A customary performance section is a must as we
try to layout some tips and guidelines on how to make our Angular more
performant with regard to apps.

Let's start from the beginning!

Building a new app
Image a scenario here. We are building a new application and given the super
awesomeness of the Angular framework, we have unanimously decided to use
Angular. Great! What next? Next is the mundane process of setting up the project.

Although setting up a project/codebase may be a mundane activity, it's still a
critical part of any engagement. This activity typically involves:

• Creating a standard folder structure. This is at times influenced by the
server framework (such as RoR, ASP.Net, NodeJS, and others).

• Adding some standard assets to specific folders.
• Including any third-party dependency upfront.
• Setting up unit/E2E testing.
• Setting up app builds for different environments such as dev, test, and

production, again influenced by the server technology involved.

What if we can short-circuit the setup process? This is indeed possible; we just
need a seed project or a starter site.

Seed projects
AngularJS has a number of seed projects that can get us started in no time. Some
seed projects integrate an Angular framework with a specific backend and some
only dictate/provide Angular-specific content. Some come preconfigured with
vendor-specific libraries/frameworks (such as LESS, SASS, Bootstrap, and
Fontawesome) whereas others just provide a plain vanilla setup.

Chapter 8

[385]

Two of the notable seed projects that are not tied to a backend but are pretty
useful are:

• angular-seed (https://github.com/angular/angular-seed): This is
a prescriptive guide for the Angular team itself. It specifically targets how
to set up code for development and unit testing an Angular application. It
does not come with any third-part integration. Download/clone it and we
are ready to go.

• ng-boilerplate (http://joshdmiller.github.io/ng-boilerplate/):
This is a more complete and a very useful seed project. The project structure
we have used for our apps derives heavily from ng-boilerplate. It has
basically everything and uses LESS for CSS, Twitter Bootstrap for views,
Font Awesome for icons/images, and the ever awesome angular-ui for some
handy directives. It even comes with a predefined build setup using Grunt.

These projects provide a head start when building with Angular.

If the app is tied to a specific backend stack, you have two choices:

• To use one of these seed projects and integrate it with the backend manually.
• To find a seed project/implementation that does it for us. Angular has

been there for a long time. There is a good probability that we can find
an integrated solution.

Dan Cancro did a comprehensive study on available starter/
seed projects and has made it available on his blog. Check it
out here at http://www.dancancro.com/comparison-
of-angularjs-application-starters/.

This discussion cannot be complete without mentioning Yeoman. If we want a bit
more automation, a standardized build, tests, and a release workflow, Yeoman is
a good choice.

Yeoman
Yeoman (http://yeoman.io/) is a suite of tools targeted toward web application
development. It defines a workflow to build modern web applications. Yeoman
consists of:

• yo: This is a scaffolding tool to generate code on the fly.
• Grunt: This is one of the most popular build systems on Node.

Handling Common Scenarios

[386]

• Bower: This is a package manager for the Web. We have already used it
while testing our application with the Karma test runner in the previous
chapter.

The scaffolding component of Yeoman is quite interesting. yo as it is named uses
the concept of a generator to achieve scaffolding.

Scaffolding is the process of generating a code skeleton that can be
built upon. Using scaffolding, we can save some initial effort and
provide some guidance around how the overall structure of any
coding artefact should look.

Generators in Yeoman are used to set up the initial seed project and later, for individual
script generation too. Since Yeoman is not targeted specifically towards Angular,
there are generators for various client and server stacks. There are also generators for
Angular, Angular + Express (the Node web framework), mobile apps, and many more.

Checkout http://yeoman.io/generators/ for an exhaustive list
of generators supported on Yeoman!

Let's try to understand the Yeoman workflow from the Angular perspective. Before
we start, make sure you have Yeoman, Bower, and Grunt installed on your machine:

1. Our first task is to select a generator. Since we are targeting Angular,
our choices are limited to generators that support Angular. For this quick
walkthrough, we will use the Angular generator (https://github.com/
yeoman/generator-angular), which is the official Angular generator
supported on Yeoman.

2. Install the generator from the command line:
npm install -g generator-angular

3. Post-installation creates a project directory that hosts the project.
Then, navigate to the directory and run the generator:
mkdir angularApp

cd angularApp

yo angular

Chapter 8

[387]

4. Follow the wizard and within no time a seed project is generated. Depending
upon the generator used, the final code may vary, but the resultant project
code uses Bower to manage script dependency and comes preconfigured
with Grunt build tasks.

5. It is easy to verify that everything was set up correctly. Just run Grunt from
the command line to compile and build the application, and it serves to see
the new app in action.

6. Once the app is set up and running, we can use the yo subgenerators
to generate routes, controllers, views, directives, and services. And the
awesome part is that they are all included in the build automatically. No
more updating the index.html file and adding dependencies; everything
is taken care by Grunt. Pretty awesome!

What all artefacts can be generated by yo subgenerators is
dictated by the Yeoman generator we chose initially.

7. If not already started, start the newly created app using Grunt, open another
command window, and run the following command:
yo angular:route exercise

8. The Angular generator generates a view, a controller, and a controller
test spec and also sets up the route for exercise. Grunt is watching and
automatically picks the changes and refreshes the app. We can now load
the page #/exercise and a standard view template is loaded. Automation
at its very best!

A word of caution here! What Yeoman generators create is opinionated to say the
least. It may or may not fit the app requirements. Some aspects of the generated code
can be tweaked easily, for example, we may be able to tweak the Grunt configuration
file and adapt it to our project needs. But things like the default generated code, the
organization of files and folders, and the result of code generated using subgenerator
may require us to tinker with the generator implementation, not a trivial affair by any
stretch of the imagination.

I suggest that when planning to use Yeoman, you try out different
generators and see the mileage you can derive from each one of them
before committing to a specific generator.

Handling Common Scenarios

[388]

Building multilingual apps
(internationalization)
English is not the first language for a sizable population of the world, therefore
building an app that just renders in English may not be a very wise idea. Imagine,
with just some content localization, how much we can gain in terms of application
reach. Internationalization is all about designing our app so that anyone in any
region of the world can use the app in their native locale.

Before we delve deeper into this topic, why not address a common confusion
between what internationalization (I18n) and what localization (L10n) is?

Internationalization (I18n) is the process of making sure that the application
has elements that can help it render locale-specific content, in other words, the
application is adaptable to different locales.

Localization (L10n) on the other hand, is the actual process of adapting parts of
the application to specific locales. These could be the text shown, the date, the time,
the current formatting, and other such content that is affected by locale change.

This overall process of I18n and L10n is, at times, referred to as
globalization.

It is a normal tendency to just overlook this topic and believe that the app we are
building does not need to handle I18n concerns. But even apps targeted at an English
language audience need to manage locale variations that are country-specific. We
may be able to work with the text content, but we still need to handle date, number,
and currency variations.

For example, en-us (language code, English: United States) and en-gb (English:
United Kingdom) have variations. The US date format is MM/DD/YY whereas
for the UK, it is DD/MM/YY. The same holds true for currency formatting too.

en-US, en-GB, and es-ES are ISO 639-1 language codes to denote a
locale. Left part of - (the dash) signifies the language and the right
part, the country.

Angular too supports internationalization; let's see how.

Chapter 8

[389]

Angular I18n support
AngularJS comes with support for I18n and L10n for date, number, and currency.
No surprises here! Angular's filters currency, date, and number are locale-aware.

To make these filters work according to a specific locale, we need to do some
locale-specific configurations. AngularJS comes with more than 250 locale files that
contain rules for formatting currency, dates, or numbers in specific locales. We need
to include the locale-specific script file for every locale that we want to support.

For example, say we want to support the German locale. We first include the
locale-specific script file in our main page (index.html):

https://code.angularjs.org/1.2.15/i18n/angular-locale_de-de.js

Every one of these script files declare a module ngLocale and contains
configurations specific to that locale. To utilize the locale specific module, we need
to reference the ngLocale module in our application:

angular.module('app',['ngLocale'])

And that's it! We have altered the currency, date, and number filters behavior in
accordance with the German locale. Look at the jsFiddle link at http://jsfiddle.
net/cmyworld/f46aLar2/, which is a working version of what we have highlighted
earlier. Go ahead and tinker with it to understand what is possible with Angular's
localized filters.

Look at the content of these locale files. It's always interesting to
know what is happening under the hood!

If we play around with the preceding jsFiddle page, and read some documentation
on Angular I18n support (https://docs.angularjs.org/guide/i18n), we will
soon realize that it has some notable limitations. There are two major shortcomings:

• Firstly, we cannot change the current locale at runtime without a complete
page reload

• Secondly, there is no service/guidance available for localizing text content,
which is a major disappointment

A good framework attracts great developers and great developers fill the gaps
left by the framework. There are some good community projects to make Angular
localization easy. We are going to discuss two of those here: one that targets the
dynamic locale change, and the other that helps with content localization.

Handling Common Scenarios

[390]

Locale changes using angular-dynamic-locale
To tackle the first limitation related to changing the locale on the fly, there is a
community project angular-dynamic-locale (http://lgalfaso.github.io/
angular-dynamic-locale/). This module allows us to dynamically change the
locale once the application has been bootstrapped.

Installing and using angular-dynamic-locale is easy. As with any third-party
module, reference the script in index.html and add the module dependency tmh.
dynamicLocale to the app's main module.

It exposes two services: tmhDynamicLocale and tmhDynamicLocaleCache to manage
dynamic locale changes. The only function available on the tmhDynamicLocale service
is set(newLocale) that changes the actual locale (for example, tmhDynamicLocale.
set('es-es')).

The tmhDynamicLocaleCache function is used for caching the locale file and service
downloads.

Look at the documentation for angular-dynamic-locale to know more about the
service and how it works. From a usage perspective the service is quite simple.

The second library that we are going to talk about is the angular-translate library.
This is a library targeted towards content/text translations.

Using angular-translate for text translations
Content translation may seem simple but there are some technical challenges here
too. To understand these challenges, you need to understand how the process
of content translation works. The task of content/text translation begins with
identifying what content should be translated. Such content can broadly be
classified in two categories:

• Fixed string literals: In any HTML page, there are parts that are dynamic
and parts that are fixed. If we hardcoded strings anywhere in the view,
those are fixed-string literals and are potential candidates for localization.

• Dynamic string literals: Any string/text fragments retrieved from the
server and rendered in the view are dynamic string literals. The exercise
name shown during workout execution is a good example of this.

Chapter 8

[391]

Localizing fixed string literals is comparatively easy. Depending upon the number of
locales to support, the content is generated for each locale and is made available to a
tool/library. The library then based on the locale requested embeds the locale-specific
content in the HTML. You will shortly learn how to do this with angular-translate.

Localizing dynamic string literals is a tricky affair and requires a good amount of
design effort upfront. Take the example of Workout Builder; while creating a new
workout or an exercise, there is no provision in the application to support localized
content addition. We cannot add the locale-specific title of a workout in Workout
Builder. We cannot define the exercise steps in different languages. Neither the user
interface nor our data store supports saving multi-locale data.

This clearly means that in its current state we cannot use the Workout Builder app to
create multilingual workout content. There is a decent amount of refactoring effort
required and hence we will skip it for now and focus our efforts on localizing static
content for our apps using angular-translate.

Angular-translate (http://angular-translate.github.io/) does a great job
in supporting content/text localization. It has a number of features including
asynchronous loading of I18n data, changing locale on the fly, filters, directives,
and a service to localize content.

To use angular-translate, the first thing that we do is look for all HTML elements in
the page that have string literals. These string literals will be replaced with keys that
angular-translate uses to localize the content.

Once the string literals are identified and replaced with keys, translation mapping
that maps keys to translated content is created. In angular-translate, this mapping
is nothing more than a JavaScript object, with the name of the property as the key
and the value as the localized content. For example, this is the German translation
mapping for the Start page:

var translations = {
 "START": {
 "HEADER":"Bereit für ein Workout?",
 "SELECT":"Wählen Workout",
 "WORKOUTS":"Workouts",
 "SEARCH":"Suchen Sie nach dem Training"
 }
};

Handling Common Scenarios

[392]

The translations object is then registered with the angular-translate $translate
service during the configuration stage:

$translateProvider.translations('de', translations);

This example sets up the German-language translation:

Remember, before using $translate, like any other Angular module
we need to first add the reference of angular-translate to index.html
and include the module dependency pascalprecht.translate.

On the same lines, other translations can be registered if desired.

We can see that translation also allows us to maintain hierarchy and we can have
any level of object hierarchy to compartmentalize the translations. For example,
if the Start page has a large number of translations, we could add subobjects to
the START property to segregate sections further.

Once the translations are registered, we are ready to use these translations in our
app. There are three ways to use them:

• Using the $translate service: We can retrieve a specific translation in
the controller using the $translate service. Although not used much, it
allows us to get the localized version of a translation key. For example:
$translate('START.HEADER').then(function (header) {
$scope.header = header;
});

The retrieval syntax is promise-based, and there is a reason for this.
The library also allows asynchronous loading of localization content
from remote locations.

• Using the translate filter: Replace the literal string with a translation key
and apply the translate filter; we are done:
<h1>Ready for a Workout?</h1> // Replace this
<h1>{{'START.HEADER'|translate}}</h1> // With this

Using the START.HEADER key, the translate filter replaces the interpolation
with the localized version of the content from the registered translations.
Remember, every translation filter adds to the number of watches on the
page. The static content now becomes dynamic and for a large page there
may be a performance impact due to this. A better but restricted approach
is to use a directive for translations.

Chapter 8

[393]

• Using the translate directive: The translate directive does something
similar to the translate filter. The directive replaces the inner content of
HTML on which it is declared with the translated text. This is how we use
directives for translations:
<h2 translate>START.WORKOUTS</h2>
<-- OR -->
<h2 translate="START.WORKOUTS"></h2>

The nice thing about the translate directive is that it supports interpolations
too, allowing a dynamic translation key. For example, look at this:
<h2 translate>{{scopeVariable}}</h2>

OR
<h2 translate="{{scopeVariable}}"></h2>

Prefer the directive version over filter version as the directive does not
create a watch-like filter. But remember, the translate directive may
not work everywhere and in such scenarios, the filter is the only choice.
A good example of this is an attribute that needs localization:
<input type="text"
 placeholder="{{'START.SEARCH'|translate}}" />

The directive version cannot handle this.

So far, we have looked at how to define translations and how to use them in views and
otherwise. The last thing that you need to understand is how the $translate service
selects the default locale and how we specify which locale to use for the translation.

We can set the default locale during the configuration stage using this:

$translateProvider.preferredLanguage('en');

This sets the default locale to en (English) and if the locale is never set during
app execution, the en locale is used.

To actually change the locale any time during the app execution, we can call the
following code:

$translate.use('de'); // Change locale to German

And magically, the locale changes!

Angular-translate is a mature library and we have just scratched the surface in
terms of its capabilities. Look at the angular-translate documentation to learn
more about the library.

Handling Common Scenarios

[394]

Have a look at the updated Personal Trainer app available in the checkpoint1 folder
under chapter8. Some parts of the app have also been made locale-aware using
the angular-translate library. The Index page container (index.html), the Start
page, and the Workout Runner page have been localized to support two languages,
English and German. Also, to showcase an advance scenario and optimize the app
experience, the translations are being loaded from a remote server (defined in
locale-specific files) instead of defining them inline at the configuration stage.

The code is also available on GitHub (https://github.com/
chandermani/angularjsbyexample) for everyone to download.
Checkpoints are implemented as branches in GitHub. The branch to
download is:
GitHub branch: checkpoint8.1 (folder: trainer)

As we can see that the Angular's inbuilt support for localization may not be first class
but the community more than makes up for it with these great modules.

Next we have a look at another common requirement that invariably most apps
have, authenticating its users.

Handling authentication and
authorization
Most, if not all, apps have a requirement to authenticate/authorize user access. We
may argue that authentication and authorization are more of a server concern than
a client concern, and that is correct. Still, the client side needs to adapt and integrate
with the authentication and authorization requirement imposed by the server.

Any typical Angular application first loads partial views and then makes calls to
pull data from the server and binds them to the views. Clearly, the views and the
remote data API are the two assets that need to be secured.

To guard these resources, you need to understand how a typical application is
secured on the server. There are primarily two broad approaches for securing any
web applications: cookie-based authentication and token-based authentication.
Each of them requires different handling on the client part. The next two sections
describe how we can integrate with either of these approaches.

Chapter 8

[395]

Cookie-based authentication
This authentication mechanism is the easiest to implement if the server stack supports
it. It's non-intrusive and may require the bare minimum of changes to the Angular
application. Cookie-based authentication involves setting the browser cookie to track
the user authentication session. The following sequence diagram explains a typical
cookie-based authentication workflow:

Client Server

HTTP 403
Unauthorized

Vertify credential &
set auth cookie

Validate the cookie

Get /secured
HTTP 302
/login

HTTP 200
Login html

HTTP 302
/secured+set-cookie

HTTP 200
secured html

POST /login
user= &pass=--- ---

GET /login

GET /secured
Cookie: auth

Here is how a typical authentication workflow works:

• When trying to access a secured resource from the browser, the server
sends a HTTP 401 Unauthorized status code if the user is not authenticated,.
As we see later, a user request is an unauthorized request if there is no cookie
attached to the request or the cookie is expired/invalid.

• This unauthorized response is intercepted by the server or, at times, by
the client framework (Angular, in our case) and it typically results in a
302 redirect (if intercepted by the server). The redirect location is the URL
to the login page (the login page allows anonymous access).

• The user then enters the username and password on the login page and
does a POST to the login endpoint.

• The server validates the credentials, sets a browser cookie, and redirects
the user to the original requested resource.

Handling Common Scenarios

[396]

• Henceforth, the authentication cookie is a part of every request (added by
the browser automatically) and the server uses this cookie to confirm its
identity and whether the user is authenticated.

This scenario assumes that the HTML and API exist under a
single domain.

As we can see, with this approach the Angular infrastructure is not involved or the
involvement is minimal. Even the login page can be a standard HTML page that just
sends data to the login endpoint for authentication. If the user lands on the Angular
app, it implicitly means that the user has already been authenticated.

The cookie-based authentication flow may vary depending on the server
framework, but the general pattern of setting a cookie and attaching a
cookie with every subsequent request, remains the same.

In a cookie-based application authentication, if the application wants to get the
user context, a server endpoint (such as /user/details) is exposed that returns
the logged in user-specific data. The client application can then implement a service
such as UserService that loads and caches the user profile data.

The scenario described here assumes that the API server (the server that returns
data) and the site where the application is hosted are in a single domain. That may
not be the case always. Even for Personal Trainer, the data resides on the MongoLab
servers and the application resides on a different server (even if it is local). And we
already know that this is a cross-domain access and it comes with its own set of
challenges.

In such a setup, even if the API server is able to authenticate the request and send a
cookie back to the client, the client application still does not send the authentication
cookie on a subsequent request.

To fix this, we need to set a Boolean variable with credentials to true on the $http
configuration object:

$http.get('api/users',{ withCredentials : true});

And the client will start attaching the authentication cookie for the
cross-domain requests.

The server too needs to have cross-origin resource sharing (CORS) enabled and
needs to respond in a specific manner for the request to succeed. It should set the
access-control-allow-credentials header to true and the access-control-allow-origin
header to the host site making the request.

Chapter 8

[397]

Check the MDN documentation (https://developer.mozilla.
org/en/http_access_control#section_5) to learn more about
this scenario in detail.

Cookie-based authentication is definitely less work on the client side, but there are
times when you have to revert to token-based access. This could be because:

• Cookies and cross-domain requests do not play nicely across browsers.
Specifically, IE8 and IE9 do not support it.

• The server may not support generating cookies or the server only exposes
token-based authentication.

• Token-based solutions are easy to integrate with native mobile applications
and desktop clients.

• Tokens are not susceptible to cross-site request forgery (CSRF) attacks.

To know more about CSRF, look at the CRSF Prevention cheat sheet
here at https://www.owasp.org/index.php/Cross-Site_
Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet.

The next section talks about supporting token-based authentication.

Token-based authentication
Token-based access is all about sending the token (typically in HTTP headers)
with each request instead of a cookie. A simplified token-based workflow looks
something like this:

Client Server

Vertify credential &
send token

Validate the token

HTTP 200
token: 3wewe2---

HTTP 200
Api data

POST /api/auth
user= &pass=--- ---

GET /api/data
Authorization: Bearer 3wewe2---

Handling Common Scenarios

[398]

Many public APIs (such as facebook and twitter) use token-based authentication.
The format of the token, where it goes, and how it is generated depend upon the
protocol used and the server implementation. Popular services that use token-based
authentication implement the OAuth 2.0 protocol for token generation and exchange.

In a typical token-based authentication setup, the views are available publically,
but the API is secured. If the application tries to pull data through API calls without
attaching the appropriate token to the outgoing request, the server returns the HTTP
401 Unauthorized status code.

Integrating with a token-based authentication system requires a decent amount of
setup on the client side too. Let's take a simplified example of a Human Resource
(HR) system that supports token-based authentication and so that you understand
how the authentication workflow works with the Angular application as a client.

The HR system has a page showing the list of employees and a login page. It also
has API endpoints to get the list of employees and generate access tokens. The API
endpoint that returns the employee list is secured by token-based access.

The workflow starts with the user loading the employee list page. The view is
loaded but the API call fails with the server returning HTTP 401 Unauthorized.

On receiving a 401 HTTP error code, the app should respond by either routing the
user to a login view (remember this is an SPA) or opening a login popup.

A naive implementation for this could be:

$http.get('/api/employees').then(function (employees) {}, function
(error) {
 if (error.status === 401) {
 $scope.unauthorized = true; //Triggers login popup
 //$location.path('/login'); // or redirect to login.
 }
});

The biggest problem with the preceding implementation is that we need to add
this code to every controller that requires remote data access as the call may fail.
Not very smart!

The correct way to handle this scenario is to use the Angular HTTP interceptor
and events. The HTTP interceptor intercepts all 401 errors and raises a global
unauthorized event. The interceptor (oversimplified) looks like this:

function ($rootScope, $q,) {
return {

Chapter 8

[399]

 responseError: function (error) {
 if (error.status === 401)
 $rootScope.$broadcast('unauthorized', error);
 return $q.reject(rejection);
 }
 }
}

With such an interceptor in place, any remote request that results in a 401 response is
caught by the interceptor and an unauthorized event is raised.

Now it's just a matter of catching this event in some type of global controller (such
as RootController in Personal Trainer) and reacting to it. We use something like this
where we set a Boolean variable true, triggering a modal username/password dialog:

$scope.$on("unauthorized",function(evt,err){
 $scope.showLoginDialog=true;
});

The user then enters his/her username/password to authenticate himself with the
server. As part of the authentication process, the server validates the credentials,
creates a token, and sends it back to the client app.

On the client side, we need to create a service that can send the username/password
to the authentication endpoint, and manage the token returned as part of a successful
authentication. A sample AuthService implementation might look like this:

angular.module('app').factory("AuthService", function ($q,
localStorageService, $http, $rootScope) {
 var service = {};
 service.authenticate = function (userName, password) {
 $http.post('/authenticate', {
 user: userName,
 password: password
 }).then(function (data) {
 localStorageService.add('authToken', data.token);
 $http.defaults.headers.common['Authorization'] =
 'Basic ' + data.token;
 $rootScope.$broadcast('userAuthenticated');
 });
 }
 service.useTokenFromCache=function() {
 var token=localStorageService.get('authToken');
 if(token)

Handling Common Scenarios

[400]

 $http.defaults.headers.common['Authorization']
 = 'Basic ' + data.token;
 }
return service;
});

The AuthService.authenticate function basically invokes the server endpoint
to verify credentials, parse the token received from the server, save the token to
the local storage/session storage for future use (if there is a page refresh), set the
appropriate HTTP header (so that the token is sent on all subsequent requests),
and finally broadcast the authentication-complete event.

The following statement actually sets the auth header for all subsequent requests:

$http.defaults.headers.common['Authorization']
= 'Basic ' + data.token;

Without this, the complete login process described here will be repeated and we
will be stuck in a loop.

This statement also highlights how we can use $http.default.headers to set
common headers for all outgoing requests. Angular shows us how to be more
specific and that we can alter specific verbs:

$http.defaults.headers.post['some-header']=value;
$http.defaults.headers.put['some-header']=value;
$http.defaults.headers.get['some-header']=value;

These headers can also be set during the configuration stage of the
Angular application, by injecting $httpProvider.

The AuthService.useTokenFromCache function is useful in case of a page refresh
scenario. This function can be invoked during the module run phase:

angular.module('app').run(function(AuthService){
 AuthService.useTokenFromCache();
});

If the token is found in local storage, the login workflow is avoided.

If the token in location storage expires (remember, each token has
a lifetime) the authentication will fail with HTTP 401, and we will
need to repeat the login flow.

Chapter 8

[401]

The walkthrough here just outlines one mechanism to send a token to the server
but the process may vary based on the server stack too. Always refer to the backend/
server documentation before implementing a token-based authentication in Angular.

Two of the notable modules/libraries that we should mention here are:

• angular-http-auth (https://github.com/witoldsz/angular-http-auth):
The preceding walkthrough can be easily implemented using this library, as
it already has the http interceptor and events to support what we have
described earlier.

• ng-token-auth (https://github.com/lynndylanhurley/ng-token-auth):
This is a comprehensive library that does much more than
just authentication.

Both these libraries can help us get started with token-based authentication.

We have taken care of authentication but what about authorization? Once the user
context is established we still need to make sure the user is only able to access the
parts that he/she is allowed to. Authorization is still missing.

Handling authorization
Like authentication, authorization support too needs to be implemented on both
the server and client side; more so, on the server than the client. Remember, anyone
can hack into the JavaScript code and circumvent the complete authentication/
authorization setup. So always tighten your server infrastructure irrespective of
whether the client has the necessary checks in place or not.

This still does not mean that we do not do an authorization check on the client.
For standard users, this is the first line of defense against unwarranted access.

When working on an authorization requirement for any application, there are
three essential elements that are part of the setup:

• The resources that need to be secured/authorized
• A list of roles and users that are part of these roles
• A mapping between the resources and the roles that defines

who can access what

From an Angular app perspective, the resources are the pages, and sometimes
sections of pages, that need to be restricted to specific roles. If the user is in a specific
role, depending upon the role-resource mapping he/she gets access to some pages,
else he/she is denied access.

Handling Common Scenarios

[402]

While authorization in Angular applications can be implemented in a number of
ways, we will outline a generic implementation that can be further customized to
suite our needs in the future.

Adding authorization support
To enable authorization, the first thing that we need to do is to expose the
logged-in user data including roles throughout the application.

Sharing user authentication context
Using the Angular service to share the authentication context perfectly fits the bill.
Look at the outline of the service here:

angular.module('app').factory('sessionContext', function () {
 var service;
 service.currentUser = function () {...}
 service.isUserInRole = function (roles) {...}
 service.authenticated = false;
 return service;
});

The sessionContext service tracks the user login session and provides details such as
the logged-in user (currentUser), whether the user is authenticated (authenticated),
and the isUserInRole function that returns true or false based on whether the user
is part of any of the roles passed into the roles parameter.

With this service in place, we can add authorization for routes (views), thereby
restricting access to some routes to specific roles only.

Restricting routes
To restrict route access, we can use the route configuration to define what roles
have access to which routes, and hence views. Here is how a sample route
configuration with role-access defined looks:

$routeProvider.when('/admin', {
 templateUrl: 'admin.html',
 controller: 'AdminController',
 roles:['admin']
 });
$routeProvider.when('/home', {
 templateUrl: 'home.html',
 controller: 'HomeController',
 roles:['admin', 'user']
 });

Chapter 8

[403]

The new roles property on the route declares who has access to the specific view.
This sets up the mapping between role and view access, but it still needs to be
enforced.

To make sure the route is not loaded for an unauthorized user, we can catch the
$routeChangeStart event in either a root controller or the module run function
and redirect the user to an unauthorized page appropriately. This is a rough draft
of how the code that does this redirection should look:

angular.module('app').run(function ($rootScope, $location,
SessionContext) {
 $rootScope.$on('$routeChangeStart', function (event, next) {
 if (next.roles && !SessionContext.authenticated) {
 $location.path('/login'); //needs to login
 }
 if (next.roles && SessionContext.authenticated &&
 !SessionContext.isInRole(next.roles)) {
 $location.path('/unauthorized'); //un-authorized
 }
 });
});

We subscribe to the $routeChangeStart event and in the event handler look at the
roles property of the next route to establish whether the user is allowed to access
the route or not. If not, we redirect the user to either the login or unauthorized page.

This fixes the routes, but there is one more thing to fix. What happens when a page
has view elements that are rendered based on the user's role?

Conditionally rendering content based on roles
Conditionally rendering content is easy to implement. We just need to show/hide
HTML elements based on the user role. Something like this works:

<div id='header'>
 <div> Welcome, {{userName}}</div>
 <div>Settings</div>
 <div ng-if='isUserInRole(["admin"])'>
Site Settings
</div>
</div>

The preceding code checks whether the user is in an admin role before rendering a
Site Setting hyperlink.

Handling Common Scenarios

[404]

What we have previously outlined is a reference implementation to achieve
authentication and authorization. With this basic understanding in place, any setup
can be tweaked to handle other custom authentication/authorization scenarios.

Communication and data sharing
patterns
A typical Angular app employs a number of framework artefacts to achieve any
functionality. Any Angular app has multiple views, controllers, services, filters, and
also directives, all working together in unison. The need for communication
between these constructs thus becomes imperative.

This section highlights how communication can happen among these constructs
and how data is shared. It tries to address scenarios such as:

• How to send data from one view to another on page transition
• How to communicate and or share data:

 ° Between controllers
 ° Between controllers and services, other controllers, or directives
 ° Via inter-directive communication and even inter-service

communication

We have used patterns at various times throughout the book. The aim here is to
consolidate our learning and provide a quick reference.

Using a URL to share data across pages
If data needs to be shared across pages, it can be done using route URLs. A route
definition is something like this:

/builder/workouts/:id

It allows setting the id fragment (on the source page) to a value that is available on
the target view controller, and other controllers that are available when the route is
loaded using $routeParams.id.

Passing data using a route is simple but the capability is limited to passing only
string parameters. This approach seems similar to the process of using query
strings when working with standard web applications with multiple pages.

Chapter 8

[405]

In spite of this limitation, a lot can be achieved by passing data using routes. Data
passed in the URL (using $routeParams) can be used by the target page to retrieve
more content based on what is passed in the URL.

Look at the route example outlined previously, it is from the Workout Builder. Clicking
on a specific workout tile in Workout List takes us to the workout edit page with
the workout name embedded in the URL (/builder/workouts/7minworkout).
The WorkoutController object then uses $routeParams.id/$route.current.
params.id to actually retrieve the selected workout from the server (using the
WorkoutService).

Using $scope
Scopes are a ubiquitous mechanism for communication and data sharing. Scopes
are used so often that we do not put much thought into how and what we are
actually sharing.

To reiterate how scopes work in Angular, look at this:

• Scopes are created as part of the directive execution, or as part of the
application bootstrapping process when an application starts

• At any given time in the application, one or more scopes are active
• Scope hierarchy is driven by the HTML element hierarchy
• A child scope inherits from its parent scope (the prototypal inheritance)

and hence can access all properties of the parent scope (isolated scope is
an exception).

Given how scopes work, parent/child views can implicitly communicate with
each other using the associated parent scope.

The Workout Runner app is an excellent example of this. It has a workout videos
view and a description panel that derive their content from the parent scope.

Scopes as a data sharing mechanism have their limitation too.

The very fact that scopes share data with a child scope through inheritance
implies two unrelated scopes or sibling scopes cannot share data/communicate
directly. In such a scenario, we need one of the following:

• Use the parent scope as a communication channel. This parent can be an
immediate parent in the case of sibling scopes or a parent scope up higher
in the hierarchy.

Handling Common Scenarios

[406]

• Or as a special case, we can use $rootScope to communicate and share data.
Since $rootScope is the root for the complete application scope hierarchy,
any data set on $rootScope can be accessed throughout all scopes.

• Use services to communicate between such scopes. This is possible because
services by nature are singleton.

While all these methods try to solve the same problem, there are some that are
preferable to others. $rootScope should be avoided as this results in the creation
of a global state, which is never a good thing.

Prefer services over parent scopes when it comes to sharing data. The disadvantage
of the parent scope is that, just by looking at variables defined on the parent
scope, one cannot determine who is consuming them, whereas services makes this
dependency explicit.

This also happens when we break a large view into multiple smaller manageable
views. We may be taking dependency implicitly on the scope that these new views
inherit. In such a case, too, we should try to evaluate whether a service can be used.

Using $rootScope
Since there is a single $rootscope service created for any Angular application,
$rootScope can be used to share data. Anything added to $rootScope is accessible
throughout the app.

Using $rootScope just to share data among controllers should be avoided. In fact, any
global state can easily be managed using services as they too are singleton in nature.

The only reason $rootScope is useful is that it can be injected into services and can
be used to broadcast/emit events at a global level.

Using services
The original intent of services is not to share data. Services allow us to encapsulate
data and behavior that is not coupled with the view and can be used across the
application. But since services are singleton in nature, they can very well be used
to share data among Angular constructs.

Create a service and inject it into a controller, directive, or other service itself and
you have a working communication channel. When service functions are invoked
or data is manipulated, the changes are automatically available to any component
that has the service dependency.

Chapter 8

[407]

When writing services to communicate and share data, write them from a behavioral
perspective, without thinking of them as a mere data store (shared).

Inter-directive communication
How can two directives interact? If they are defined on the same HTML tag or
follow a parent-child hierarchy, we can use the require attribute of the directive
definition object.

To reiterate what you learned in the chapter on directives, use this:

require: ['ngModel'],

To take dependency on another directive (the preceding ngModel) defined on the
same element, use this:

require: ['?^busyIndicator'],

This takes dependency on a directive defined on the parent (busyIndicator).

Remember, directive dependency is about taking dependencies on
the directive's controller function.

When require is true, the directive controller dependency is injected into the link
function of the dependent directive, as shown here:

link: function (scope, elm, attr, ctrl) {
ctrl.$setValidity(validatorName, data);
}

But if the directives are not defined on the same HTML hierarchy or are not using
directive controllers, then they can communicate using either the parent scope, the
$rootScope, services, or through events. For directives with isolated scopes, the
options are further limited to services, $rootScope, or events. Avoid $rootScope
and stick to the service or event broadcast/subscribe in such a case.

Using events
Events are a great mechanism for communicating between components and while
keeping them decoupled. A publisher component raises an event, and one or more
subscribers can listen to the events and react to them. Events can be used across
controllers, directives, filters, or services for communication.

Handling Common Scenarios

[408]

Angular eventing infrastructure is set up using three functions defined on the
scope object:

• To publish $broadcast and $emit: $broadcast sends a message down
the scope hierarchy and $emit sends a message up the hierarchy.

• To subscribe $on.

When using $broadcast or $emit from a scope to raise an event, we need to be
aware of where the subscribers are. To reiterate what you learned about eventing
in Chapter 3, More AngularJS Goodness for 7 Minute Workout, have a look at this:

• With $scope.$emit, event messages travel up, hence any upstream parent
scope can subscribe to these event messages

• With $scope.$broadcast, event messages travel down, hence any
downstream child scope can subscribe to these messages

But if the publisher and subscribers do not share a parent-child hierarchy,
then the publisher can use $rootSope.$broadcast to communicate.
$rootScope.$broadcast propagates the event through every available scope in
the application.

While $emit and $broadcast are great mechanisms for communicating, we should
be careful not to overuse them. Too many events can make an application difficult
to understand and debug as the flow of the application is not linear any more.

With this we have covered every communication mechanism/pattern available.

As far as possible, stick to services to share data and the events to publish
important changes that happen during the execution of the app.

Let's focus our attention on another critical area of Angular apps: performance!

Performance
From what we have seen and built so far, we can all agree that AngularJS is insanely
fast. For standard size views, we rarely see any performance bottlenecks. But many
views start small and then grow over time. And sometimes the requirement dictates
we build large pages/views with a sizable amount of HTML and data. In such a case,
there are things that we need to keep in mind to provide an optimal user experience.

Chapter 8

[409]

Take any framework and the performance discussion on the framework always
requires one to understand the internal working of the framework. When it comes
to Angular, we need to understand how Angular detects model changes. What
are watches? What is a digest cycle? What roles do scope objects play? Without a
conceptual understanding of these subjects, any performance guidance is merely
a checklist that we follow without understanding the why part.

We have covered concepts behind the digest cycle and dirty checking in Chapter 3,
More AngularJS Goodness for 7 Minute Workout, while implementing audio playback
support for the 7 Minute Workout app.

To summarize that discussion here, we saw the following:

• The live binding between the view elements and model data is set up using
watches. When a model changes, one or many watches linked to the model
are triggered. Angular's view binding infrastructure uses these watches to
synchronize the view with the updated model value.

• Model change detection only happens when a digest cycle is triggered.
• Angular does not track model changes in real time; instead, on every digest

cycle, it runs through every watch to compare the previous and new
values of the model to detect changes.

• A digest cycle is triggered when $scope.$apply is invoked. A number of
directives and services internally invoke $scope.$apply:

 ° Directives such as ng-click, ng-mouse* do it on user action
 ° Services such as $http and $resource do it when a response is

received from server
 ° $timeout or $interval call $scope.$apply when they lapse

• A digest cycle tracks the old value of the watched expression and compares
it with the new value to detect if the model has changed. Simply put, the
digest cycle is a workflow used to detect model changes.

• A digest cycle runs multiple times till the model data is stable and no
watch is triggered.

Once you have a clear understanding of the digest cycle, watches, and scopes,
we can look at some performance guidelines that can help us manage views as
they start to grow.

Handling Common Scenarios

[410]

Performance guidelines
When building any Angular app, any performance optimization boils down to:

• Minimizing the number of binding expressions and hence watches
• Making sure that binding expression evaluation is quick
• Optimizing the number of digest cycles that take place

The next few sections provide some useful pointers in this direction.

Remember, a lot of these optimization may only be necessary if
the view is large.

Keeping the page/view small
The sanest advice is to keep the amount of content available on a page small. The
user cannot interact/process too much data on the page, so remember that screen
real estate is at a premium and only keep necessary details on a page.

The lesser the content, the lesser the number of binding expressions; hence, fewer
watches and less processing are required during the digest cycle. Remember, each
watch adds to the overall execution time of the digest cycle. The time required
for a single watch can be insignificant but, after combining hundreds and maybe
thousands of them, they start to matter.

Angular's data binding infrastructure is insanely fast and relies on a
rudimentary dirty check that compares the old and the new values.
Check out the stack overflow (SO) post (http://stackoverflow.
com/questions/9682092/databinding-in-angularjs), where
Misko Hevery (creator of Angular) talks about how data binding works
in Angular.

Data binding also adds to the memory footprint of the application. Each watch has
to track the current and previous value of a data-binding expression to compare
and verify if data has changed.

Keeping a page/view small may not always be possible, and the view may grow.
In such a case, we need to make sure that the number of bindings does not grow
exponentially (linear growth is OK) with the page size. The next two tips can help
minimize the number of bindings in the page and should be seriously considered
for large views.

Chapter 8

[411]

Optimizing watches for read-once data
In any Angular view, there is always content that, once bound, does not change. Any
read-only data on the view can fall into this category. This implies that once the data
is bound to the view, we no longer need watches to track model changes, as we don't
expect the model to update.

Is it possible to remove the watch after one-time binding? Angular itself does not
have something inbuilt, but a community project bindonce (https://github.com/
Pasvaz/bindonce) is there to fill this gap.

Angular 1.3 has added support for bind and forget in the native
framework. Using the syntax {{::title}}, we can achieve
one-time binding. If you are on Angular 1.3, use it!

Hiding (ng-show) versus conditional rendering (ng-
if/ng-switch) content
You have learned two ways to conditionally render content in Angular. The ng-show/
ng-hide directive shows/hides the DOM element based on the expression provided
and ng-if/ng-switch creates and destroys the DOM based on an expression.

For some scenarios, ng-if can be really beneficial as it can reduce the number of
binding expressions/watches for the DOM content not rendered. Consider the
following example:

<div ng-if='user.isAdmin'>
 <div ng-include="'admin-panel.html'"></div>
</div>

The snippet renders an admin panel if the user is an admin. With ng-if, if the
user is not an admin, the ng-include directive template is neither requested nor
rendered saving us of all the bindings and watches that are part of the admin-panel.
html view.

From the preceding discussion, it may seem that we should get rid of all ng-show/
ng-hide directives and use ng-if. Well, not really! It again depends; for small size
pages, ng-show/ng-hide works just fine. Also, remember that there is a cost to
creating and destroying the DOM. If the expression to show/hide flips too often,
this will mean too many DOMs create-and-destroy cycles, which are detrimental
to the overall performance of the app.

Handling Common Scenarios

[412]

Expressions being watched should not be slow
Since watches are evaluated too often, the expression being watched should return
results fast.

The first way we can make sure of this is by using properties instead of functions to
bind expressions. These expressions are as follows:

{{user.name}}
ng-show='user.Authorized'

The preceding code is always better than this:

{{getUserName()}}
ng-show = 'isUserAuthorized(user)'

Try to minimize function expressions in bindings. If a function expression is
required, make sure that the function returns a result quickly. Make sure a
function being watched does not:

• Make any remote calls
• Use $timeout/$interval
• Perform sorting/filtering
• Perform DOM manipulation (this can happen inside directive

implementation)
• Or perform any other time-consuming operation

Be sure to avoid such operations inside a bound function.

To reiterate, Angular will evaluate a watched expression multiple times during
every digest cycle just to know if the return value (a model) has changed and the
view needs to be synchronized.

Minimizing the deep model watch
When using $scope.$watch to watch for model changes in controllers, be careful
while setting the third $watch function parameter to true. The general syntax of
watch looks like this:

$watch(watchExpression, listener, [objectEquality]);

In the standard scenario, Angular does an object comparison based on the reference
only. But if objectEquality is true, Angular does a deep comparison between
the last value and new value of the watched expression. This can have an adverse
memory and performance impact if the object is large.

Chapter 8

[413]

Handling large datasets with ng-repeat
The ng-repeat directive undoubtedly is the most useful directive Angular has.
But it can cause the most performance-related headaches. The reason is not because
of the directive design, but because it is the only directive that allows us to generate
HTML on the fly. There is always the possibility of generating enormous HTML just
by binding ng-repeat to a big model list. Some tips that can help us when working
with ng-repeat are:

• Page data and use limitTo: Implement a server-side paging mechanism
when a number of items returned are large.
Also use the limitTo filter to limit the number of items rendered. Its syntax
is as follows:

<tr ng-repeat="user in users |limitTo:pageSize">…</tr>

Look at modules such as ngInfiniteScroll (http://
binarymuse.github.io/ngInfiniteScroll/) that
provide an alternate mechanism to render large lists.

• Use the track by expression: The ng-repeat directive for performance tries
to make sure it does not unnecessarily create or delete HTML nodes when
items are added, updated, deleted, or moved in the list. To achieve this, it
adds a $$hashKey property to every model item allowing it to associate
the DOM node with the model item.
We can override this behavior and provide our own item key using the
track by expression such as:
<tr ng-repeat="user in users track by user.id">…</tr>

This allows us to use our own mechanism to identify an item. Using your
own track by expression has a distinct advantage over the default hash key
approach. Consider an example where you make an initial AJAX call to get
users:
$scope.getUsers().then(function(users){ $scope.users = users;})

Later again, refresh the data from the server and call something similar
again:
$scope.users = users;

Handling Common Scenarios

[414]

With user.id as a key, Angular is able to determine what elements were
added/deleted and moved; it can also determine created/deleted DOM
nodes for such elements. Remaining elements are not touched by ng-repeat
(internal bindings are still evaluated). This saves a lot of CPU cycles for the
browser as fewer DOM elements are created and destroyed.

• Do not bind ng-repeat to a function expression: Using a function's return
value for ng-repeat can also be problematic, depending upon how the
function is implemented.
Consider a repeat with this:
<tr ng-repeat="user in getUsers()">…</tr>

And consider the controller getUsers function with this:
$scope.getUser = function() {
 var orderBy = $filter('orderBy');
 return orderBy($scope.users, predicate);
}

Angular is going to evaluate this expression and hence call this function
every time the digest cycle takes place. A lot of CPU cycles were wasted
sorting user data again and again. It is better to use scope properties and
presort the data before binding.

• Minimize filters in views, use filter elements in the controller: Filters
defined on ng-repeat are also evaluated every time the digest cycle
takes place. For large lists, if the same filtering can be implemented in the
controller, we can avoid constant filter evaluation. This holds true for any
filter function that is used with arrays including filter and orderBy.

Avoiding mouse-movement tracking events
The ng-mousemove, ng-mouseenter, ng-mouseleave, and ng-mouseover directives
can just kill performance. If an expression is attached to any of these event directives,
Angular triggers a digest cycle every time the corresponding event occurs and for
events like mouse move, this can be a lot.

We have already seen this behavior when working with 7 Minute Workout, when we
tried to show a pause overlay on the exercise image when the mouse hovers over it.

Avoid them at all cost. If we just want to trigger some style changes on mouse
events, CSS is a better tool.

Chapter 8

[415]

Avoiding calling $scope.$apply
Angular is smart enough to call $scope.$apply at appropriate times without us
explicitly calling it. This can be confirmed from the fact that the only place we have
seen and used $scope.$apply is within directives.

The ng-click and updateOnBlur directives use $scope.$apply to transition from a
DOM event handler execution to an Angular execution context. Even when wrapping
the jQuery plugin, we may require to do a similar transition for an event raised by the
JQuery plugin.

Other than this, there is no reason to use $scope.$apply. Remember, every
invocation of $apply results in the execution of a complete digest cycle.

The $timeout and $interval services take a Boolean argument invokeApply. If
set to false, the lapsed $timeout/$interval services does not call $scope.$apply
or trigger a digest cycle. Therefore, if you are going to perform background operations
that do not require $scope and the view to be updated, set the last argument to false.

Always use Angular wrappers over standard JavaScript objects/
functions such as $timeout and $interval to avoid manually
calling $scope.$apply. These wrapper functions internally call
$scope.$apply.

Also, understand the difference between $scope.$apply and $scope.$digest.
$scope.$apply triggers $rootScope.$digest that evaluates all application watches
whereas, $scope.$digest only performs dirty checks on the current scope and its
children. If we are sure that the model changes are not going to affect anything other
than the child scopes, we can use $scope.$digest instead of $scope.$apply.

Lazy-loading, minification, and creating
multiple SPAs
I hope you are not assuming that the apps that we have built will continue to use
the numerous small script files that we have created to separate modules and
module artefacts (controllers, directives, filters, and services). Any modern build system
has the capability to concatenate and minify these files and replace the original file
reference with a unified and minified version. Therefore, like any JavaScript library,
use minified script files for production.

The problem with the Angular bootstrapping process is that it expects all Angular
application scripts to be loaded before the application can bootstrap. We cannot load
modules, controllers, or in fact, any of the other Angular constructs on demand. This
means we need to provide every artefact required by our app, upfront.

Handling Common Scenarios

[416]

For small applications, this is not a problem as the content is concatenated and
minified; also, the Angular application code itself is far more compact as compared
to the traditional JavaScript of jQuery-based apps. But, as the size of the application
starts to grow, it may start to hurt when we need to load everything upfront.

There are at least two possible solutions to this problem; the first one is about
breaking our application into multiple SPAs.

Breaking applications into multiple SPAs
This advice may seem counterintuitive as the whole point of SPAs is to get rid of
full page loads. By creating multiple SPAs, we break the app into multiple small
SPAs, each supporting parts of the overall app functionality.

When we say app, it implies a combination of the main (such as index.
html) page with ng-app and all the scripts/libraries and partial views
that the app loads over time.

For example, we can break the Personal Trainer application into a Workout Builder app
and a Workout Runner app. Both have their own start up page and scripts. Common
scripts such as the Angular framework scripts and any third-party libraries can be
referenced in both the applications. On similar lines, common controllers, directives,
services, and filters too can be referenced in both the apps.

The way we have designed Personal Trainer makes it easy to achieve our objective.
The segregation into what belongs where has already been done.

The advantage of breaking an app into multiple SPAs is that only relevant scripts
related to the app are loaded. For a small app, this may be an overkill but for large
apps, it can improve the app performance.

The challenge with this approach is to identify what parts of an application
can be created as independent SPAs; it totally depends upon the usage pattern
of the application.

For example, assume an application has an admin module and an end consumer/
user module. Creating two SPAs, one for admin and the other for the end customer,
is a great way to keep user-specific features and admin-specific features separate.
A standard user may never transition to the admin section/area, whereas an admin
user can still work on both areas; but transitioning from the admin area to a
user-specific area will require a full page refresh.

If breaking the application into multiple SPAs is not possible, the other option is
to perform the lazy loading of a module.

Chapter 8

[417]

Lazy-loading modules
Lazy-loading modules or loading module on demand is a viable option for large
Angular apps. But unfortunately, Angular itself does not have any in-built support
for lazy-loading modules.

Furthermore, the additional complexity of lazy loading may be unwarranted
as Angular produces far less code as compared to other JavaScript framework
implementations. Also once we gzip and minify the code, the amount of code that
is transferred over the wire is minimal.

If we still want to try our hands on lazy loading, there are two libraries that can help:

• ocLazyLoad (https://github.com/ocombe/ocLazyLoad): This is a library
that uses script.js to load modules on the fly

• angularAMD (http://marcoslin.github.io/angularAMD): This is a library
that uses require.js to lazy load modules

With lazy loading in place, we can delay the loading of a controller, directive, filter,
or service script, until the page that requires them is loaded.

The overall concept of lazy loading seems to be great but I'm still not sold on this
idea. Before we adopt a lazy-load solution, there are things that we need to evaluate:

• Loading multiple script files lazily: When scripts are concatenated and
minified, we load the complete app at once. Contrast it to lazy loading where
we do not concatenate but load them on demand. What we gain in terms of
lazy-load module flexibility we lose in terms of performance. We now have
to make a number of network requests to load individual files.
Given these facts, the ideal approach is to combine lazy loading with
concatenation and minification. In this approach, we identify those feature
modules that can be concatenated and minified together and served on
demand using lazy loading. For example, Personal Trainer scripts can be
divided into three categories:

 ° The common app modules: This consists of any script that has
common code used across the app and can be combined together
and loaded upfront

 ° The Workout Runner module(s): Scripts that support workout
execution can be concatenated and minified together but are loaded
only when the Workout Runner pages are loaded.

 ° The Workout builder module(s): On similar lines to the preceding
categories, scripts that support workout building can be combined
together and served only when the Workout Builder pages are loaded.

Handling Common Scenarios

[418]

As we can see, there is a decent amount of effort required to refactor the
app in a manner that makes module segregation, concatenation, and lazy
loading possible.

• The effect on unit and integration testing: We also need to evaluate the
effect of lazy-loading modules in unit and integration testing. The way
we test is also affected with lazy loading in place. This implies that, if lazy
loading is added as an afterthought, the test setup may require tweaking
to make sure existing tests still run.

The Personal Trainer implementation has been altered to showcase
the lazy-loading approach using ocLazyLoad. The implementation is
available in the checkpoint2 folder under chapter8.
GitHub branch: checkpoint8.2 (folder – trainer)

Given these facts, we should evaluate our options and check whether we really
need lazy loading or we can manage by breaking a monolithic SPA into multiple
smaller SPAs.

Caching remote data wherever appropriate
Caching data is the one of the oldest tricks in the book to improve any webpage/
application performance. Analyze your GET requests and determine what data can
be cached. Once such data is identified, it can be cached from a number of locations.

Data cached outside the app can be cached in:

• Servers: The server can cache repeated GET requests to resources that do
not change very often. This whole process is transparent to the client and
the implementation depends on the server stack used.

• Browsers: In this case, the browser caches the response. Browser caching
depends upon the server sending HTTP cache headers such as ETag and
cache-control to guide the browser about how long a particular resource
can be cached. Browsers can honor these cache headers and cache data
appropriately for future use.

If server and browser caching is not available or if we also want to incorporate any
amount of caching in the client app, we do have some choices:

• Cache data in memory: A simple Angular service can cache the HTTP
response in the memory. Since Angular is SPA, the data is not lost unless
the page refreshes. This is how a service function looks when it caches data:
var workouts;

Chapter 8

[419]

service.getWorkouts = function () {
 if (workouts) return $q.resolve(workouts);
 return $http.get("/workouts").then(function (response)
 {
 workouts = response.data;
 return workouts;
 });
};

The implementation caches a list of workouts into the workouts variable
for future use. The first request makes a HTTP call to retrieve data, but
subsequent requests just return the cached data as promised. The usage
of $q.resolve makes sure that the function always returns a promise.

• Angular $http cache: Angular's $http service comes with a configuration
option cache. When set to true, $http caches the response of the particular
GET request into a local cache (again an in-memory cache). Here is how we
cache a GET request:

$http.get(url, { cache: true});

Angular caches this cache for the lifetime of the app, and clearing it is not
easy. We need to get hold of the cache dedicated to caching HTTP responses
and clear the cache key manually.

The caching strategy of an application is never complete without a cache invalidation
strategy. With cache, there is always a possibility that caches are out of sync with
respect to the actual data store.

We cannot affect the server-side caching behavior from the client; consequently,
let's focus on how to perform cache invalidation (clearing) for the two client-side
caching mechanisms described earlier.

If we use the first approach to cache data, we are responsible for clearing
cache ourselves.

In the case of the second approach, the default $http service does not support
clearing cache. We either need to get hold of the underlying $http cache store and
clear the cache key manually (as shown here) or implement our own cache that
manages cache data and invalidates cache based on some criteria:

var cache = $cacheFactory.get('$http');
cache.remove("http://myserver/workouts"); //full url

Handling Common Scenarios

[420]

Using Batarang to measure performance
Batarang (a Chrome extension), as we have already seen, is an extremely handy tool
for Angular applications. Using Batarang to visualize app usage is like looking at an
X-Ray of the app. It allows us to:

• View the scope data, scope hierarchy, and how the scopes are linked to
HTML elements

• Evaluate the performance of the application
• Check the application dependency graph, helping us understand how

components are linked to each other, and with other framework components.

If we enable Batarang and then play around with our application, Batarang captures
performance metrics for all watched expressions in the app. This data is nicely
presented as a graph available on the Performance tab inside Batarang:

That is pretty sweet!

Chapter 8

[421]

When building an app, use Batarang to gauge the most expensive
watches and take corrective measures, if required.

Play around with Batarang and see what other features it has. This is a very handy
tool for Angular applications.

This brings us to the end of the performance guidelines that we wanted to share in
this chapter. Some of these guidelines are preventive measures that we should take
to make sure we get optimal app performance whereas others are there to help when
the performance is not up to the mark.

Useful third-party libraries
In the Angular world, there are some third-party libraries/modules that we need to
highlight as they have become the de facto choice in their respective problem domain.
These libraries include:

• ui-router (https://github.com/angular-ui/ui-router): Angular
routing allows us to define a single main view (using ng-view) and drive
the view through route changes. For some applications, this may be too
limiting and hence they require a more capable routing infrastructure.
The ui-router library overcomes this limitation, allowing us to define
multiple siblings and nested views and link them through routes (referred
to as states in the ui-router vocabulary). Any time the standard routing
infrastructure is not working, we should explore the ui-router capabilities.

• AngularUI (http://angular-ui.github.io/): This is a suite of tools
for Angular. It has a number of gems such as ui-bootstrap, a drop-in
replacement for Bootstrap JavaScript components; ng-grid, a grid component;
and ui-router, that we have discussed already; and many more.

• ng-grid (http://angular-ui.github.io/ng-grid/): If we are looking
for a grid for Angular, this is the one to use. This is a feature-rich and highly
customizable grid.

There are efforts being made to rewrite ng-grid as ui-grid.
Do check it out too (http://ui-grid.info/).

• Restangular (https://github.com/mgonto/restangular): This is a
replacement for the $resource service. A feature-rich service that is totally
promise–based and supports nested resources, custom functions, and many
more features.

Handling Common Scenarios

[422]

• Ionic Framework (http://ionicframework.com/): Ionic is a hybrid
mobile app framework that allows us to build apps that target mobile
devices. It uses HTML, CSS, and JavaScript, and has been optimized for
AngularJS development.

These are just a few libraries that we have highlighted; there are many more useful
modules/libraries out there that can save our precious development time. Always
search before implementing your own!

With this, we have reached the end of this chapter and the book. Awesome! It's time
to summarize your learning.

Summary
In this chapter, we gained some useful insight into a number of practical issues
surrounding AngularJS development. These tips and guidelines can be extremely
handy when building real-life applications using the framework.

We started the chapter by exploring the concept of seed projects and how these
projects can get us up and running in no time. We looked at some popular seed
projects that can serve as a base for any new Angular app development. We also
touched upon Yeoman, a suite of tools that helps us kick-start new projects.

Next you learned about multilingual apps and some common concerns surrounding
internationalization. We explored the localization support that Angular provides
and its shortcomings. We also localized some of our app content in the US and
German locales.

In spite of being a server side concern, authentication and authorizations do affect
client implementation. The section on authentication/authorization covered how
to handle authentication in a cookie- and token-based setup.

We then covered a number of useful patterns for communication and data
sharing among various Angular constructs. This section covered scope, service,
and event-based communication with their merits and shortcomings.

Lastly, we looked at the ever-so-important topic of performance, where you learned
ways to optimize an Angular app performance.

The book is coming to a close, but for everyone reading it the journey has just
begun. It's time to put theories into practice, hone our newly acquired skills, build
something useful with Angular, and share it with the world. The more you invest
in Angular the more rewarding the framework is. Let's get started!

Index
Symbols
7 Minute Workout app

about 34
animation, adding to 129-131
codebase download 35
fixing 274
requirements 40
URL 34

7 Minute Workout model 39-41
7 Minute Workout routes

defining 65, 66
7 Minute Workout view

about 61, 62
image path binding, with ng-src 62, 63
ng-style used, with Bootstrap progress

bar 63, 64
$broadcast function 144
$emit function 144
$evalAsync loop method 103
$httpBackend service

methods 356
$http service 225-227
$inject annotation 46
$interval implementation

testing 353, 354
$location service

URL 69
used, for view navigation

in controller 69, 70
working with 70, 71

$modal.open function, arguments
controller 120
resolve 121

scope 120
size 121
templateUrl 119

$resource service
$resource action invocation 256-258
abstraction cost 260
actions, defining 255, 256
defining 254, 255
Exercise CRUD, used with 261-264
RESTful API services 253
used, for accessing exercise data 258-260
with non-RESTful endpoints 264, 265

$resource action invocation 256-258
$resource actions

defining 255, 256
$resource, parameters

actions 255
paramDefaults 254
url 254

$rootScope 27
$routeParams service 209, 210
$routeProvider dependency

path 67
routeConfig 67

$route service
URL 69

$sanitize service
URL 92

$scope
$rootScope, using 406
using 405, 406

$setValidity function 199
$timeout implementation

testing 353, 354

[424]

$watch method
exploring 55, 56
used, for implementing transitions 57
used, for watching model changes 54

A
ajax-button directive

onClick 317
submitting 317

AJAX button directive
creating 316-321

Angular
ng-dirty 190
ng-invalid 190
ng-invalid-<errorkey> 190
ng-pristine 190
ng-touched 190
ng-untouched 190
ng-valid 190
ng-valid-<errorkey> 190

Angular $compile service 304, 305
Angular documentation

URL 30
angular-dynamic-locale

used, for locale change 390
Angular generator

URL 386
Angular I18n support

about 389
angular-translate, used for text

translations 390-394
locale change, angular-dynamic-locale

used 390
AngularJS

$http 222
$resource 222
$routeParams service 209, 210
adopting 322, 323
and server interactions 222
bindings 20-22
dynamically generated form

elements 210, 211
request transformer 269, 270
response transformer 269, 270
transformers 268
URL 30
validation 188, 189

AngularJS components
controllers, unit testing 344, 345
directives, unit testing 360, 361
filters, unit testing 341-343
resolve, unit testing 368-370
routes, unit testing 368-370
services, unit testing 355, 356
unit testing, ngMock module used 343, 344
WorkoutController, unit testing 349

AngularJS documentation
differences 18
limitations 18
URL 18

AngularJS eventing
about 142-144
history tracking, enriching with 145-147

AngularJS filters
about 150
defining 80, 81

AngularJS forms
about 176
AngularJS model state 189-191
AngularJS validation 188, 189
constructs 177
custom validation, for exercise

count 198-200
decimal, implementing to integer

formatter 186, 187
decimal, implementing to parser 186, 187
form directive 177
model updates, controlling with

ng-model-options directive 181, 182
NgModelController, defining 184-186
ng-model directive 177, 183, 184
workout builder validation 191-194
workout, saving 200, 201

AngularJS JavaScript animation 127, 128
AngularJS jQuery integration

about 322-324
Carousel jQuery plugin, integrating in

Workout Runner 324-329
jQuery events, tunneling with

directive 329-332
AngularJS model controller

formatter 184
parser 184

[425]

AngularJS model state
$dirty 189
$pristine 189
$touched 189
$untouched 189
$valid 189
about 189-191

AngularJS Promise API
promises 58-60
used, for exercise transitions 58

AngularJS services
creating 132

AngularJS services primer 132
AngularJS testing ecosystem 336
Angular scopes

revisiting 212-218
Angular services

used, for tracking workout history 131
Angular solution

options 324
angular-translate

URL 391
used, for text translations 390-394

angular-ui package
URL 118

animate.css
URL 130

animation
adding, to 7 Minute Workout 129-131

animation effect, mechanisms
animation 125
transition 124

animation, with AngularJS
about 124
AngularJS CSS animation 124
AngularJS JavaScript animation 127, 128
animation, adding to 7 Minute

Workout 129-131
API key

passing, interceptor used 266-268
app

bootstrapping 27-29
building 384
seed projects 384, 385
Yeoman 385-387

app code, organizing
File per component 37
Folder per component 38
Folder per feature 38

app controller
$watch used, for watching model

changes 54
about 42, 43
AngularJS Promise API used, for

exercise transitions 58
DI 43
exercise transitions, implementing 54
implementations 47-50
implementations, verifying 51-53

app model
about 10-12
features 10

app modules
adding 42

app view
about 13, 14
AngularJS bindings 20-22
directives 16-18
expressions 18, 19
interpolation 15, 16

args parameter 41
audio

exercise progress, tracking with 95, 96
stopping, on pause 113

audio support
implementing, for exercise 96-98

audio synchronization issue
fixing 102

authentication
cookie-based authentication 395, 396
handling 394
token-based authentication 397-401

authorization
authorization support, adding 402
handling 394, 401

authorization support
adding 402
content, rendering 403
routes, restricting 402, 403
user authentication context, sharing 402

automation
need for 334

[426]

B
Batarang

about 25, 29, 420
URL 29
using 25, 420

Bootstrap progress bar
ng-style, used with 63
URL 63

Bower
about 340
script dependencies, managing

with 340, 341
browser storage

workout history, persisting in 148, 149
busy-indicator 302

C
callback functions

arguments 226
codebase download 35
code organization

about 36
JavaScript code, organizing 36-39

communication pattern 404
compile function

attr 284
element 284

config phase 66
constant services

services, creating with 133
controller

about 8, 12, 13, 37
dependencies, setting up 345-348
refactoring 116, 117
revisiting 23, 24
unit testing 344, 345
WorkoutHistoryTracker service,

integrating with 139
controller dependencies

$interval 346
$location 346
$routeParams 347
$scope 346
appEvents 347
Exercise 347

setting up 345-348
WorkoutHistoryTracker 346
WorkoutService 347

controller implementations
about 47-50
exercise duration tracking,

$interval service used 50, 51
verifying 51-53

cookie-based authentication 395, 396
cross-domain access 249, 250
cross-domain requests

creating, JSONP used 250, 251
cross-site request forgery (CSRF) 397
cross-site scripting (XSS) 91
CRUD 245
CRUD, on exercises/workouts

AngularJS 249, 250
cross-domain access 249, 250
cross-origin resource sharing (CORS) 252
JSONP used, for creating cross-domain

requests 250, 251
performing 245
workout, creating 246-249
workout, fixing 246-249

CSS class
manipulating, ng-class directive used 112

custom promises
$q.when function 243, 244
creating 242, 243
resolving 242, 243

D
data

browsers 418
servers 418

database
seeding 224, 225

data binding, AngularJS
URL 104

data, of exercise step
ng-bind-html directive, using with 93, 94

data sharing pattern 404
dependency annotations

$inject annotation 46
about 46
inline annotation 46, 47

[427]

dependency injection. See DI
description panel

adding 72-74
development server

setting up 9, 10
DI

about 28, 42, 43, 333
Dependency Injection 101 44
in Angular 45

digest cycle 103, 104
DI, in Angular

dependency annotations 46, 47
minification, handling 45

directive compile function
HTML, injecting 309, 310

directive-isolated scopes
AJAX button directive,

creating 316-321
defining 314-316

directives
about 15-17, 37, 277, 278
anatomy 279
configuration object 279
controller function 305
families 278
guidelines 331
life cycle 299-301
ng-click 17
ng-click directive, exploring 283-286
ng-controller 17
ng-model 17
ng-show 17
remote-validator and busy-indicator,

testing 363, 364
remote-validator, testing 361-363
testing, with templateUrl 365-368
unit testing 360, 361
workout-tile directive, creating 279-283

directives, applying
attribute 282
class 283
comment 283
element 282

directive templates 310-313
dirty checking 104
document databases 224

dynamically generated form elements
exercise duration, validating with

ng-form 211, 212

E
E2E testing

about 370, 371, 378
backend data, setting up for 376
E2E tests, writing for app 374-376
managing, page objects used 380-382
Protractor 371, 372
Protractor, setting up for 372, 373
Workout Runner, testing 379

events
using 407, 408

exercise and workout data
custom promises, creating 242, 243
custom promises, resolving 242, 243
detail pages, fixing 240-244
loading 228, 229
loading, from server 239, 240
promise chaining 237, 238
server data, mapping to application

models 233-237
exercise and workout lists

loading, from server 229, 230
WorkoutService provider,

implementing 231-233
Exercise CRUD

with $resource 261-264
exercise data

accessing, $resource used 258, 259
exercise duration

tracking, $interval service used 50, 51
exercise indicator

adding, ng-if directive used 84-86
exercise list

controller 166
implementing 164
view 166

exercise progress
tracking, with audio 95, 96

exercises
adding, exercise nav used 171
pausing 107
pausing, keyboard used 114, 115

[428]

resuming, keyboard used 114, 115
exercise step formatting

about 91
enabling 93, 94

exercise transitions
implementing 54

expressions 18, 19

F
factory service

services, creating with 134
filter object, expressions

false|undefined 151
function(actual, expected) 151
function(value) 151
objects 150
strings 150
true 151

filters
about 37, 81
date 81
filter 81
lowercase 81
number 81
unit testing 341-343
uppercase 81
used, for displaying remaining

workout time 79
forms

resetting 209
forms, saving

fixing 205-207
formatter 184
FormController API

$addControl(modelController) 203
$removeControl(modelController) 203
$setDirty() 203
$setPristine() 203
$setUntouched() 203
$setValidity(validationKey, status,

childController) 203
about 203, 204

G
Git

URL 340
globalization 388
glyphs, Bootstrap site

URL 113
Guess the number!

building 10

H
Hello Angular app 8, 9
history tracking

enriching, with AngularJS
eventing 145-147

HTML
injecting, in directive compile

function 309, 310
HTTP cache headers 418
HTTP request/response

mocking, with $httpBackend 356, 357
http-server module

URL 10
Human Resource (HR) 398

I
IDE extensions

about 29
URL 29

image path binding
with ng-src 62, 63

initializeGame function 13
inline annotation 46, 47
interceptor

used, for passing API key 266-268
inter-directive communication

about 305, 407
remote-validator (Angular 1.3),

fixing 307-309
remote-validator (Angular 1.3 or older),

fixing 306, 307
Internet Explorer (IE) 283
interpolation 15, 16

[429]

invalid route
resolving 174

isolated scopes 313

J
Jasmine Spies

used, for verifying dependencies 352, 353
JavaScript-based animation, jQuery

URL 127
JavaScript code

organizing 36-39
jQuery plugin

URL 324
jsFiddle

about 29
URL 29

jsPerf
URL 145

K
Karma

setting up, for unit testing 338, 339
unit tests, debugging 349-351
URL 339

keyboard
used, for pausing exercises 114, 115
used, for resuming exercises 114, 115

keyboard events
references, for capturing 115

L
lazy loading modules

about 417
angularAMD 417
ocLazyLoad 417

left nav
building 168, 169

left navigation
and top navigation, integrating 162-164

link function 292-294

M
media-player directive 101
minification

about 45
handling 45

model data
and server data, differences 234

model update, on blur
about 296
directive, life cycle 299-301
multiple directive, on single element 302
priority directive, on single element 302
remote validation, performing 297, 298

model updates
controlling, with ng-model-options

(Angular 1.3) 181, 182
Model View Controller. See MVC
module 14, 343
module initialization 66-69
MongoDB

URL 222
MongoLab

URL 222
mouse events

used, for pausing overlays 110, 111
used, for resuming overlays 110, 111

multi-lingual apps
Angular I18n support 389
building 388

multiple SPAs
creating 416

MVC 7, 8

N
NaN (not a number) 187
navigation pattern

routes 161
newCollection parameter 57
ngAnimate module

URL 128
ng-annotate

URL 47

[430]

ng-bind-html directive
about 92
using, with data of exercise step 93
using, with data of exercise steps 94

ng-boilerplate 385
ng-class directive

about 112
used, for manipulating CSS class 112

ng-click directive
exploring 283-286

ng-enter-active directive 126
ng-enter directive 126
ng-if directive

used, for adding exercise indicator 84-86
ng-include directive

embedded scripts 75
remote file location 75
working with 75, 76

ng-leave-active directive 126
ng-leave directive 126
ng-messages directive

validation error messages, managing
with 195-197

ngMock module
used, for unit testing 343, 344

NgModelController
defining 184-186

ng-model directive
about 177, 183, 184
input 177
select 177
textarea 177
used, with input 178
used, with select 179, 180
used, with textarea 178

ng-move-active directive 126
ng-move directive 126
ng-options directive

about 180
formats 179

ng-repeat directive
used, for filtering workout history 150
working with 77, 78, 413, 414

ng-repeat directive, properties
$even 153
$first 153
$index 153
$last 153
$middle 153
$odd 153

ng-src directive
image path binding, used with 62, 63
used, with Bootstrap progress bar 63, 64

ng-style directive 63ng-view directive
used, for SPAs 64

Node.js ecosystem 336
Node Package Manager (NPM) 338
non-RESTful endpoints

$resource service, used with 264
normalization 282
notable modules/libraries

angular-http-auth 401
ng-token-auth 401

O
oldCollection parameter 57
orderBy filter 151
orderBy filter, expression parameter

arrays 152
function(element) 152
strings 152

overlays
pausing, mouse events used 110, 111
pausing, plain CSS used 112
resuming, mouse events used 110, 111
resuming, plain CSS used 112

P
page objects

used, for managing E2E testing 380-382
parameters, link function

attr 292
ctrls 292
element 292
scope 292

parser 184

[431]

pause
audio, stopping on 113
implementing,

in WorkoutController 108, 109
view fragment, adding for 110

performance, AngularJS
about 408, 409
guidelines 410

performance guidelines
$scope.$apply, avoiding 415
Batarang used, for measuring

performance 420, 421
data, caching 418, 419
deep model watch, minimizing 412
expression, watching 412
hiding, versus conditional rendering 411
large dataset, handling with

ng-repeat 413, 414
lazy loading 415
minification 415
mouse movement tracking events,

avoiding 414
multiple SPAs, creating 415
page/view, maintaining 410
watches, optimizing for read-once data 411

persistence store
database, seeding 224, 225
setting up 222-224

Personal Trainer app
about 156
and server integration 227
CRUD, performing on

exercises/workouts 245
exercise and workout data, loading 228
requirements 157

Personal Trainer layout
about 160, 161
navigation pattern, with routes 161

Personal Trainer model
about 158
model, as service 159, 160
workout model, sharing 158, 159

pipeline architecture
URL 184

plain CSS
used, for pausing overlays 112
used, for resuming overlays 112

Plunker
about 29
URL 92

prefight request 249
preprocessors 365
promise API

catch(errorCallback) 59
finally(callback) 59
then(successCallback, errorCallback,

notifyCallback) 59
promise chaining 237, 238
promises 58-60, 245
property injection 44
Protractor

about 371, 372
by object 375
element function 375
setting up, for E2E testing 372, 373
URL 373

Protractor setup
components 371

providers 66
provider service

services, creating with 135, 136

Q
Quality Assurance (QA) 335

R
rejected promises

routing failure, handling for 271, 272
workouts not found, handling 272, 273

remaining workout time
displaying, filters used 79

remote validation
performing 297, 298

remote validation clues directive
Angular $compile service 304, 305
busy-indicator and remote-validator,

integrating 305
directive controller function 305
directive templates 310-313
HTML, injecting in directive compile

function 309, 310

[432]

implementing 302-304
transclude 310-313

remote validation directive
building, for validating workout

name 287, 288
remote-validator directive 288-290
remote-validator directive,

in Angular 1.3 294-296
remote-validator

and busy-indicator, testing 363, 364
fixing 306, 307
testing 361-363

remote-validator (Angular 1.3)
fixing 307-309

remote-validator directive
about 288-291
in Angular 1.3 294-296
link function 292-294
require directive definition 291

Representational State Transfer (REST) 253
request interceptor 265, 266
require directive definition 291
resolve object property

function 173
string constant 173

resources
about 30
Angular documentation 30
AngularJS Google+ Channel 30
AngularJS Google group 30
build with Angular 30

response interceptor 265, 266
RESTful API services 253
resume

implementing,
in WorkoutController 108-110

view fragment, adding for 110
route resolutions 245
route resolve 173
routes

navigation pattern, used with 161
routing failure

handling, for rejected promises 271, 272

S
SCE

URL 74
scope 24-27
scope parameter 57
script dependencies

managing, with Bower 340, 341
seconds-to-time filter

AngularJS filters, defining 80, 81
creating 79
secondsToTime filter, implementing 81-83

seed projects
about 384, 385
angular-seed 385
ng-boilerplate 385

server
exercise and workout data,

loading from 239, 240
exercise and workout lists,

loading from 229, 230
server data

and model data, differences 234
mapping, to application models 233-236

server integration
and Personal Trainer 227

server interactions
and AngularJS 222

service constructs
URL 136

services
about 37
benefits 132
creating, service used 134
creating, with constant services 133
creating, with factory service 134
creating, with provider service 135, 136
creating, with value services 133
HTTP request/response, mocking

with $httpBackend 356, 357
unit testing 355, 356
using 406
WorkoutService, testing 358-360

SPAs
7 Minute Workout routes, defining 65, 66
$location service, working 70
about 34, 64

[433]

config phase 66
module initialization 66-69
run phase 66
view layouts, used for 64
view navigation, $location used 69

start and finish pages
adding 64
SPAs 64

T
testing, in AngularJS

about 334
AngularJS testing ecosystem 336
E2E testing, performing 335
end-to-end testing 334
types 334
unit testing 334

TextMate bundle
URL 29

text translations
dynamic string literals 390
fixed string literals 390

third-party libraries
about 421, 422
AngularUI 421
Ionic Framework 422
ng-grid 421
Restangular 421
ui-router 421

token-based authentication 397-401
tools

about 29
Batarang 29
Browser Developer Console 29
IDE extensions 29
jsFiddle 29
Plunker 29

top navigation
and left navigation, integrating 162-164

transclude 310-313
transformer functions

registering 269
transitions

implementing, $watch used 57
translations

$translate service, using 392

translate directive, using 393
translate filter, using 392

U
ui.bootstrap dialog

URL 118
ui.bootstrap modal dialog

integrating 118-124
ui-router

URL 164, 421
unit testing

about 334, 337
debugging, in Karma 349, 351
for AngularJS components 341
Karma, setting up for 338, 339
script dependencies, managing with

Bower 340, 341
unwarranted model update

fixing 208
URL

used, for sharing data across pages 404

V
validation messages

fixing 205-207
value services

services, creating with 133
verifyGuess function 13
video panel

adding 72-74
video playback, pop-up dialog 118
view 8
view fragment

adding, for pause 110
adding, for resume 110

W
WebDriver

URL 371
workout

AngularJS form directive 202
AngularJS forms 176
Angular scopes, revisiting 212-217
building 167
creating 246-249

[434]

exercises adding, exercise nav used 171
fixing 246-249
form validation 202
implementing 164
left nav, building 168, 169
saving 200, 201
WorkoutBuilderService service,

adding 169, 170
workout builder view, implementing 175
WorkoutDetailController,

implementing 171, 172
workout and exercise detail pages

fixing 240-244
promises 245
route resolutions 244, 245

WorkoutAudioController
implementing 98-101

WorkoutBuilderService service
adding 169, 170

workout builder validation
about 191, 192
validation error messages, managing

with ng-messages 195-197
working, for Angular 1.3 194, 195
working, for pre-Angular 1.3 192-194

workout builder view
implementing 175

WorkoutController
$interval implementation, testing 353, 354
$timeout implementation, testing 353, 354
Jasmine Spies, used for verifying

dependencies 352, 353
pause, implementing in 108-110
resume, implementing in 108-110
unit testing 349-351
unit tests, debugging in Karma 349-351
workout pause/resume, testing 355

WorkoutDetailController
implementing 171-175
invalid route, resolving 174
route resolve 173

workout history
filtering 149
filtering, ng-repeat expression used 150
page, implementing as pop-up

dialog 140-142
persisting, in browser storage 148, 149

tracking, Angular services used 131
WorkoutHistoryTracker service

about 136
implementing 137, 138
integrating, with controller 139
scopes 137
services 137

workout history tracking
implementing 136

workout list controller 166
workout list view 166
workout model

sharing 158, 159
workout pause/resume

testing 355
Workout Runner

testing 379
WorkoutService

creating, as exercise repository 165
creating, as workout repository 165
exercise-related CRUD operations 165
implementing 231-233
testing 358-360
workout-related CRUD operations 165

workout-tile directive
creating 279-283

workout video panel
enhancing 116
refactoring 116, 117

Y
Yeoman

about 385-387
Bower 386
Grunt 385
URL 385, 386
yo 385

Thank you for buying
AngularJS by Example

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

AngularJS Web Application
Development Blueprints
ISBN: 978-1-78328-561-7 Paperback: 300 pages

A practical guide to developing powerful web
applications with AngularJS

1. Get to grips with AngularJS and the
development of single-page web applications.

2. Develop rapid prototypes with ease using
Bootstraps Grid system.

3. Complete and in depth tutorials covering many
applications.

Mastering Web Application
Development with AngularJS
ISBN: 978-1-78216-182-0 Paperback: 372 pages

Build single-page web applications using the power
of AngularJS

1. Make the most out of AngularJS by
understanding the AngularJS philosophy and
applying it to real-life development tasks.

2. Effectively structure, write, test, and finally
deploy your application.

3. Add security and optimization features to your
AngularJS applications.

Please check www.PacktPub.com for information on our titles

Mastering AngularJS Directives
ISBN: 978-1-78398-158-8 Paperback: 210 pages

Develop, maintain, and test production-ready
directives for any AngularJS-based application

1. Explore the options available for creating
directives, by reviewing detailed explanations
and real-world examples.

2. Dissect the life cycle of a directive and
understand why they are the base of the
AngularJS framework.

3. Discover how to create structured,
maintainable, and testable directives through a
step-by-step, hands-on approach to AngularJS.

Learning AngularJS [Video]
ISBN: 978-1-78398-506-7 Duration: 02:00 hrs

A fast, easy and rewarding way to create web
applications with AngularJS

1. Create simple and powerful web applications
and learn to make your code reusable.

2. Add resources, directives, services, and
factories to increase the efficiency of your app.

3. Get a spectacular and interactive visualization
for your app through third party components
such as D3.js, and Bootstrap.

4. Use CSS and animations to make your app
look good.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	The Model View Controller basics
	The customary Hello Angular app (Guess the Number!)
	Setting up a development server
	Building Guess the Number!
	The app model
	The controller
	The App view
	Interpolation
	Directives
	Expressions
	AngularJS bindings

	Revisiting the controller
	Scope
	App bootstrapping
	Tools
	Resources
	Summary

	Chapter 2: Building Our First App –
7 Minute Workout
	What is 7 Minute Workout?
	Downloading the codebase

	Code organization
	Organizing the JavaScript code

	The 7 Minute Workout model
	Adding app modules
	The app controller
	Dependency injection
	Dependency Injection 101
	Dependency injection in Angular

	Controller implementations
	Tracking the duration of an exercise using the $interval service

	Verifying the implementation
	Implementing exercise transitions
	Using $watch to watch the model changes
	Exploring $watch
	Implementing transitions using $watch

	Using the AngularJS Promise API for exercise transitions
	The basics of promises

	The 7 Minute Workout view
	Image path binding with ng-src
	Using ng-style with the Bootstrap
progress bar

	Adding start and finish pages
	Understanding SPAs
	View layouts for SPAs using ng-view
	Defining 7 Minute Workout routes
	The config/run phase and module initialization
	View navigation in the controller using $location
	Working with the $location service

	Learning more about an exercise
	Adding descriptions and video panels
	Working with ng-include
	Working with ng-repeat

	Displaying the remaining workout time using filters
	Creating a seconds-to-time filter
	Understanding AngularJS filters
	Implementing the secondsToTime filter

	Adding the next exercise indicator
using ng-if
	Summary

	Chapter 3: More AngularJS Goodness for 7 Minute Workout
	Formatting the exercise steps
	Understanding ng-bind-html
	Using ng-bind-html with data of exercise steps

	Tracking exercise progress with audio clips
	Implementing audio support
	Implementing WorkoutAudioController
	Exploring the audio synchronization issue
	AngularJS dirty checking and digest cycles
	Fixing the next-up exercise audio synchronization issue

	Pausing exercises
	Implementing pause/resume in WorkoutController
	Adding the view fragment for pausing/resuming
	Pausing/resuming overlays using mouse events
	Pausing/resuming overlays with plain CSS
	CSS class manipulation using ng-class

	Stopping audio on pause
	Using the keyboard to pause/resume exercises

	Enhancing the workout video panel
	Refactoring the video panel and controller
	Video playback in the pop-up dialog
	Integrating the ui.bootstrap modal dialog

	Animations with AngularJS
	AngularJS CSS animation
	AngularJS JavaScript animation
	Adding animation to 7 Minute Workout

	Workout history tracking using Angular services
	AngularJS services primer
	Creating AngularJS services

	Implementing workout history tracking
	The WorkoutHistoryTracker service
	Integrating the WorkoutHistoryTracker service with a controller

	Adding the workout history view
	AngularJS eventing
	Enriching history tracking with AngularJS eventing
	Persisting workout history in browser storage
	Filtering workout history.
	Filtering and ordering using ng-repeat
	AngularJS filters
	The AngularJS orderBy filter
	Special ng-repeat properties

	Summary

	Chapter 4: Building Personal Trainer
	The Personal Trainer app – the problem scope
	Personal Trainer requirements

	The Personal Trainer model
	Sharing the workout model
	The model as a service

	The Personal Trainer layout
	The Personal Trainer navigation with routes
	Integrating left and top navigation

	Implementing the workout and exercise list
	WorkoutService as a workout and exercise repository
	Exercise and workout list controllers
	Exercise and workout list views

	Building a workout
	Building left nav
	Adding the WorkoutBuilderService service
	Adding exercises using exercise nav
	Implementing WorkoutDetailController
	Route resolving
	Resolving routes not found!
	Implementing WorkoutDetailController continued…

	Implementing the workout builder view
	AngularJS forms
	AngularJS form constructs
	The ng-model directive
	Controlling model updates with ng-model-options (Angular 1.3)
	ng-model-beyond data binding
	Understanding NgModelController
	Implementing a decimal-to-integer formatter and parser
	AngularJS validation
	The AngularJS model state
	Workout builder validation
	Custom validation for an exercise count
	Saving the workout

	The AngularJS form directive and form validation
	The FormController API
	Fixing the saving of forms and validation messages
	Fixing unwarranted model updates
	Resetting the form
	AngularJS $routeParams
	Dynamically generated inputs and forms

	Revisiting Angular scopes

	Summary

	Chapter 5: Adding Data Persistence to Personal Trainer
	AngularJS and server interactions
	Setting up the persistence store
	Seeding the database

	$http service basics
	Personal Trainer and server integration
	Loading exercise and workout data
	Loading exercise and workout lists from a server
	Mapping server data to application models
	Understanding promise chaining
	Loading exercise and workout data from the server
	Fixing workout and exercise detail pages
	Creating and resolving custom promises
	Fixing workout and exercise detail pages continued…

	Performing CRUD on exercises/workouts
	Fixing and creating a new workout
	Cross-domain access and AngularJS
	Using JSONP to make cross-domain requests
	Cross-origin resource sharing

	Getting started with $resource
	RESTful API services
	$resource basics
	Understanding $resource actions
	$resource action invocation

	Using $resource to access exercise data
	The hidden cost of hiding asynchronicity

	Exercise CRUD with $resource
	The $resource service with non-RESTful endpoints

	Request/response interceptors
	Using an interceptor to pass the API key

	AngularJS request/response transformers
	Handling routing failure for rejected promises
	Handling workouts not found

	Fixing the 7 Minute Workout app
	Summary

	Chapter 6: Working with Directives
	Directives – an introduction
	Anatomy of a directive
	Creating a workout-tile directive
	Exploring the ng-click directive

	Building a remote validation directive to validate the workout name
	The remote-validator directive
(for v1.3 or less)
	The require directive definition
	The link function

	The remote-validator directive in Angular 1.3

	Model update on blur
	Using priority to affect the order of execution of the compile and link functions
	Life cycle of a directive
	The priority and multiple directives on a single element

	Implementing a remote validation clues directive
	Angular $compile service
	Directive controller function
	Inter-directive communication – integrating busy-indicator and remote-validator
	Fixing remote-validator (Angular 1.3 or older)
	Fixing remote-validator (Angular 1.3)

	Injecting HTML in the directive compile function
	Understanding directive templates and transclude

	Understanding directive-isolated scopes
	Creating the AJAX button directive

	AngularJS jQuery integration
	Integrating the Carousel jQuery plugin in Workout Runner
	Tunnelling jQuery events with directive

	Summary

	Chapter 7: Testing the AngularJS App
	The need for automation
	Testing in AngularJS
	Types of testing
	Testing who and when
	The AngularJS testing ecosystem

	Getting started with unit testing
	Setting up Karma for unit testing
	Managing script dependencies with Bower
	Unit testing AngularJS components
	Unit testing filters
	Unit testing using the ngMock module
	Unit testing controllers
	Unit testing WorkoutController
	Unit testing services
	Unit testing directives
	Unit testing routes and resolve

	Getting started with E2E testing
	Introduction to Protractor
	Setting up Protractor for E2E testing
	Writing E2E tests for the app
	Setting up backend data for E2E testing
	Mocking the server backend in E2E testing

	More E2E tests
	Testing Workout Runner
	Page objects to manage E2E testing

	Summary

	Chapter 8: Handling Common Scenarios
	Building a new app
	Seed projects
	Yeoman

	Building multi-lingual apps (internationalization)
	Angular I18n support
	Locale changes using angular-dynamic-locale
	Using angular-translate for text translations

	Handling authentication and authorization
	Cookie-based authentication
	Token-based authentication
	Handling authorization
	Adding authorization support

	Communication and data sharing patterns
	Using a URL to share data across pages
	Using $scope
	Using $rootScope

	Using services
	Inter-directive communication
	Using events

	Performance
	Performance guidelines
	Keeping the page/view small
	Optimizing watches for read-once data
	Hiding (ng-show) vs conditional rendering (ng-if/ng-switch) content
	Expressions being watched should not be slow
	Minimizing deep model watch
	Handling large datasets with ng-repeat
	Avoiding mouse-movement tracking events
	Avoiding calling $scope.$apply
	Lazy-loading, minification, and creating multiple SPAs
	Caching remote data wherever appropriate
	Using Batarang to measure performance

	Useful third-party libraries
	Summary

	Index

